APPLICATION OF NAIVE BAYES ALGORITHM FOR SALES ANALYSIS AT ERIGO STORE
DOI:
https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v8i1.5404Abstract
The purpose of this study is to research and compare the accuracy of the previous research algorithm, namely the KNN algorithm with the Naive Bayes algorithm, for the evaluation of Erigo Store sales. Given the increasingly fierce market competition, it is very necessary to formulate a marketing strategy to analyze and predict products using data mining processing methods. Data mining is the introduction of patterns, machine learning techniques, statistics, and visualization techniques that aim to provide information to make better decisions and improve prediction accuracy through the process of analyzing data based on the Knowledge Discovery in Database (KDD) procedure. The research dataset was taken from shopee Toko Erigo e-commerce sales data using web scraping techniques, starting from January 2021 to June 2023 consisting of 5 categories of Erigo Store products, namely Shirts, T-Shirt, Outwear, Jacket and Pants. The overall accuracy of the previous research product using the KNN algorithm was 83.62% while the study using the application of the Naive Bayes algorithm for sales analysis in Erigo stores achieved an accuracy of 98.3% by using Matlab to analyze the data. The accuracy of the T-shirt category reached 98.6%, the shirt category reached 98.4%, the pants category reached 98.1%, the outwear category reached 98.7% and the accuracy of the jacket category reached 97.6%.
References
Saragih, R. H., Pamungkas, W. A., Yumna, F., Sitanggang, D., & Wardani, S. (2023). Penerapan Data Mining untuk Memprediksi Penjualan di Erigo Store dengan K-Nearest Neighbor. Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika), 8(2), 649-661.
Widia, F., & Murniati, W. (2022). Penerapan Data Mining Untuk Memprediksi Penjualan Kain Tenun Mnggunakan Regresi Linear. Jurnal Ilmiah Teknik Mesin, Elektro dan Komputer, 2(1), 27-39.
Wahyuni, F. S., & Zahro, H. Z. (2022). Penerapan Teknik Data Mining untuk Menentukan Rencana Strategi Penjualan. Jupiter (Jurnal Pendidikan Teknik Elektro), 7(1), 47-54.
Ronaldi, A. A., & Hunaifi, N. (2021). Implementasi Data Mining Untuk Prediksi Penjualan Pestisida Pada CV Mitra Artha Sejati Menggunakan Algoritma Naive Bayes. eProsiding Teknik Informatika (PROTEKTIF), 1(1), 250-257.
Ramadhani, D., A’yuniyah, Q., Elvira, W., Nazira, N., Ambarani, I., & Intan, S. F. (2023). Analisa Algoritma Naïve Bayes Classifier (NBC) Untuk Prediksi Penjualan Alat Kesehatan: Naïve Bayes Classifier (NBC) Algorithm Analysis for Prediction Medical Device Sales. Indonesian Journal of Informatic Research and Software Engineering (IJIRSE), 3(2), 119-126.
Purwanto, A., Isnawati, S. I., & Ramadhani, N. L. (2022). Pengembangan Usaha Bisnis Retail Modern Pada Toko Pakaian Kedjora Grosir. Jurnal Bakti Humaniora, 2(1), 29-37.
Suntoro, J. (2019). DATA MINING: Algoritma dan Implementasi dengan Pemrograman php. Elex Media Komputindo.
Nosiel, N., Sriyanto, S., & Maylani, F. (2021, September). Perbandingan Teknik Data Mining Untuk Prediksi Penjualan Pada UMKM Gerabah. In Prosiding Seminar Nasional Darmajaya (Vol. 1, pp. 72-86).
Naraswati, N. P. G., Nooraeni, R., Rosmilda, D. C., Desinta, D., Khairi, F., & Damaiyanti, R. (2021). Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification. SISTEMASI, 10(1), 222-238.
Pratama, I. R., Maimunah, M., & Arumi, E. R. (2022). Sistem Klasifikasi Penjualan Produk Alat Listrik Terlaris Untuk Optimasi Pengadaan Stok Menggunakan Naïve Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA, 6(4), 2135-2139.
Ali, M. M. (2022). Metodologi Penelitian Kuantitatif Dan Penerapan Nya Dalam Penelitian. JPIB: Jurnal Penelitian Ibnu Rusyd, 1(2), 1-5.
Mardiayanti, M., & Andriana, A. N. (2022). Pengaruh Harga dan Kualitas Produk serta Review Produk terhadap Keputusan Pembelian Produk Scarlett Whitening. Jurnal Pendidikan Dan Kewirausahaan, 10(3), 1091-1109.
Zafira, O. N. (2020). STUDI LITERATUR TENTANG PENGARUH MODIFIKASI MEDIA PEMBELAJARAN PENDIDIKAN JASMANI TERHADAP HASIL BELAJAR (Doctoral dissertation, Doctoral dissertation, Universitas Pendidikan Indonesia).
Ahmad, A., & Muslimah, M. (2021, December). Memahami teknik pengolahan dan analisis data kualitatif. In Proceedings of Palangka Raya International and National Conference on Islamic Studies (PINCIS) (Vol. 1, No. 1).
Gustientiedina, G., Adiya, M. H., & Desnelita, Y. (2019). Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan. Jurnal Nasional Teknologi Dan Sistem Informasi, 5(1), 17-24.
Harahap, S. Z., & Nastuti, A. (2019). Teknik Data Mining Untuk Penentuan Paket Hemat Sembako Dan Kebutuhan Harian Dengan Menggunakan Algoritma Fp-Growth (Studi Kasus Di Ulfamart Lubuk Alung). Informatika, 7(3), 111-119.
Djufri, M. (2020). Penerapan Teknik Web Scraping Untuk Penggalian Potensi Pajak (Studi Kasus Pada Online Market Place Tokopedia, Shopee Dan Bukalapak). Jurnal BPPK: Badan Pendidikan Dan Pelatihan Keuangan, 13(2), 65-75.
Irawan, B., & Bahtiar, A. (2024). PENERAPAN METODE NAIVE BAYES PADA ANALISIS SENTIMEN APLIKASI MCDONALDS DI GOOGLE PLAY STORE. JATI (Jurnal Mahasiswa Teknik Informatika), 8(1), 759-766.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Maria Natalenta Sitanggang, Rivandu Ambarita, Cantika Marpaung, Delima Sitanggang
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish their manuscripts through the Journal of Information Systems and Computer Science agree to the following:
- Copyright to the manuscripts of scientific papers in this Journal is held by the author.
- The author surrenders the rights when first publishing the manuscript of his scientific work and simultaneously the author grants permission / license by referring to the Creative Commons Attribution-ShareAlike 4.0 International License to other parties to distribute his scientific work while still giving credit to the author and the Journal of Information Systems and Computer Science as the first publication medium for the work.
- Matters relating to the non-exclusivity of the distribution of the Journal that publishes the author's scientific work can be agreed separately (for example: requests to place the work in the library of an institution or publish it as a book) with the author as one of the parties to the agreement and with credit to sJournal of Information Systems and Computer Science as the first publication medium for the work in question.
- Authors can and are expected to publish their work online (e.g. in a Repository or on their Organization's/Institution's website) before and during the manuscript submission process, as such efforts can increase citation exchange earlier and with a wider scope.