Comparison of Classification Algorithm in Predicting Stroke Disease
DOI:
https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v6i1.2714Keywords:
Machine Learning, Logistic Regression, Random Forest, XGBoost, StrokeAbstract
ABSTRAK- To prevent stroke, we need a way to predict whether someone has had a stroke through medical parameters. With the influence of technology in the medical world, stroke can be predicted using the Data Science method, which starts with Data Acquisition, Data Cleaning, Exploratory Data Analysis, Preprocessing, and the last stage is Model Building. Based on the model that has been made, it is concluded that the algorithm with the best performance, in this case, is XGBoost with a precision value of 0.9, a recall value of 0.95, an f1 value of 0.92, and a ROC-AUC value of 0.978 after receiving five folds of cross-validation. With these results, the model created can be used to make predictions in real-time.
Kata kunci : Machine Learning, Logistic Regression, Random Forest, XGBoost, Stroke
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Fenna Kemala Hutabarat, Daniel Ryan Hamonangan Sitompul, Stiven Hamonangan Sinurat, Andreas Situmorang, Ruben Ruben, Dennis Jusuf Ziegel, Evta Indra
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish their manuscripts through the Journal of Information Systems and Computer Science agree to the following:
- Copyright to the manuscripts of scientific papers in this Journal is held by the author.
- The author surrenders the rights when first publishing the manuscript of his scientific work and simultaneously the author grants permission / license by referring to the Creative Commons Attribution-ShareAlike 4.0 International License to other parties to distribute his scientific work while still giving credit to the author and the Journal of Information Systems and Computer Science as the first publication medium for the work.
- Matters relating to the non-exclusivity of the distribution of the Journal that publishes the author's scientific work can be agreed separately (for example: requests to place the work in the library of an institution or publish it as a book) with the author as one of the parties to the agreement and with credit to sJournal of Information Systems and Computer Science as the first publication medium for the work in question.
- Authors can and are expected to publish their work online (e.g. in a Repository or on their Organization's/Institution's website) before and during the manuscript submission process, as such efforts can increase citation exchange earlier and with a wider scope.