Comparison of Classification Algorithm in Predicting Stroke Disease

Authors

  • Fenna Kemala Hutabarat Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Daniel Ryan Hamonangan Sitompul a:1:{s:5:"en_US";s:89:"Prodi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia";}
  • Stiven Hamonangan Sinurat Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Andreas Situmorang Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Ruben Ruben Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Dennis Jusuf Ziegel Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Evta Indra Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia

DOI:

https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v6i1.2714

Keywords:

Machine Learning, Logistic Regression, Random Forest, XGBoost, Stroke

Abstract

ABSTRAK- To prevent stroke, we need a way to predict whether someone has had a stroke through medical parameters. With the influence of technology in the medical world, stroke can be predicted using the Data Science method, which starts with Data Acquisition, Data Cleaning, Exploratory Data Analysis, Preprocessing, and the last stage is Model Building. Based on the model that has been made, it is concluded that the algorithm with the best performance, in this case, is XGBoost with a precision value of 0.9, a recall value of 0.95, an f1 value of 0.92, and a ROC-AUC value of 0.978 after receiving five folds of cross-validation. With these results, the model created can be used to make predictions in real-time.

Kata kunci : Machine Learning, Logistic Regression, Random Forest, XGBoost, Stroke

Downloads

Published

2022-09-29

How to Cite

[1]
F. K. Hutabarat, “Comparison of Classification Algorithm in Predicting Stroke Disease ”, JUSIKOM PRIMA, vol. 6, no. 1, pp. 99-104, Sep. 2022.

Most read articles by the same author(s)

<< < 1 2 3 > >>