DETEKSI DAN PREDIKSI PENYAKIT DIABETES MELITUS TIPE 2 MENGGUNAKAN MACHINE LEARNING (SCOOPING REVIEW)
DOI:
https://doi.org/10.34012/jukep.v5i2.2671Keywords:
early detectio, risk factors, prediction, type 2 diabetes mellitus, machine learningAbstract
Diabetes Mellitus is a chronic disease and one of the non-communicable diseases whose growth is very fast. This study aims to explore and analyze the early detection and prediction system of risk factors for type 2 diabetes mellitus which utilizes machine learning methods. This type of research is a scoping review to accumulate and synthesize the results of previous studies on the early detection of risk factors and the prediction system of Diabetes Mellitus type 2 using machine learning methods. The inclusion criteria are articles in English or Indonesian, journals published in the 2017-2021 range, full text, and not systematic reviews. Article searches are 4 databases, namely Google Scholar, Pubmed, International Journal of Public Health Science/Hindawi, and IEEE Xplore. The results obtained as many as 2,941 articles, using the PRISMA method. The remaining 15 studies were maintained and met the criteria for qualitative analysis. The articles used machine learning methods in the creation of early detection models and prediction systems. Some articles use the merging of two methods (statistical and machine learning). The machine learning techniques mostly use supervised, unsupervised, and deep learning techniques. For the algorithms used, the majority of researchers used more than one algorithm such as algorithm support vector machine (SVM), random forest (RF), Decision Tree (DT), LASSO, and others, to compare the best accuracy of each algorithm. Risk factors associated with Diabetes Mellitus type 2 incidence are age, gender, obesity, family history of the disease, lack of physical activity, genetics, environment, smoking, blood pressure, and diet.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Johannes Ginting, Rapael Ginting, Hartono Hartono
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish their manuscripts through the Journal of Keperawatan Priority agree to the following:
- Copyright to the manuscripts of scientific papers in this Journal is held by the author.
- The author surrenders the rights when first publishing the manuscript of his scientific work and simultaneously the author grants permission / license by referring to the Creative Commons Attribution 4.0 International License to other parties to distribute his scientific work while still giving credit to the author and the Journal of Journal Keperawatan Priority as the first publication medium for the work.
- Matters relating to the non-exclusivity of the distribution of the Journal that publishes the author's scientific work can be agreed separately (for example: requests to place the work in the library of an institution or publish it as a book) with the author as one of the parties to the agreement and with credit to sJournal ofJournal Keperawatan Priority as the first publication medium for the work in question.
- Authors can and are expected to publish their work online (e.g. in a Repository or on their Organization's/Institution's website) before and during the manuscript submission process, as such efforts can increase citation exchange earlier and with a wider scope.