APPLICATION OF THE K-MEANS CLUSTERING METHOD FOR PERFORMANCE ASSESSMENT BASED ON EDUCATOR COMPETENCE

Authors

  • Paul Erikson Universitas Prima Indonesia
  • Bobby Rahman Angkat Universitas Prima Indonesia
  • Eliza Christovel Yosua Universitas Prima Indonesia
  • Mutiara Sembiring Universitas Prima Indonesia
  • Marlince Nababan Universitas Prima Indonesia

DOI:

https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v7i1.3869

Abstract

Performance appraisal is one thing to respect someone while working in an institution, one of which is a private higher education institution. To respect the performance of resources, there needs to be a value assigned to someone. Assessments carried out for one semester need to be reviewed again because during filling in the student assessments do not fill in according to their understanding so that a review needs to be carried out again. The assessment was carried out using the K-Means method by applying the concept of the centroid value. There are 4 (four) variables used, namely pedagogic competence, personal competence, social and professional competence with a value of K = 3. The maximum number of observations for cluster 3 is 368 while the value of Distances Between Cluster Centroids shows 2 suitable clusters, namely cluster 1 and cluster 2, which is 1.7020. The author gives suggestions to remove outlier data before entering the data to be trained into the algorithm to improve visualization if the dataset is large.

Key Word: Performance Appraisal, Data Mining, K-Means

References

S. Fathuroh, “Metode K-Means Clustering Dalam Optimalisasi Kinerja Dosen Pendamping Akademik Pada Program Kampus Merdeka,” J. Sistim Inf. dan Teknol., vol. 5, pp. 5–9, 2022, doi: 10.37034/jsisfotek.v5i2.172.

L. Hakim and Y. P. Santoso, “Penilaian Kinerja Dosen Tetap Menggunakan K-Mean Clustering Pada Universitas Xyz,” J. Inform. dan Komputasi, vol. 13, no. August, pp. 87–94, 2019.

D. Sartika and J. Jumadi, “Seminar Nasional Teknologi Komputer & Sains (SAINTEKS) Clustering Penilaian Kinerja Dosen Menggunakan Algoritma K-Means (Studi Kasus: Universitas Dehasen Bengkulu),” pp. 703–709, 2019, [Online]. Available: https://seminar-id.com/semnas-sainteks2019.html

D. Sukrianto, “Penerapan Data Mining Untuk Kinerja Dosen Menggunakan Metode K–Means Clustering (Studi Kasus Di Amik Mahaputra Riau),” J. PI-Cache, vol. 5, No 1, no. Dm, pp. 54–63, 2016.

K. K. Silalahi, “Simki-Techsain Vol. 01 No. 01 Tahun 2017 ISSN : XXXX-XXXX,” Simki-Techsin, vol. 01, no. 01, pp. 1–7, 2017.

B. Parlambang and Fauziah, “Implementasi Algoritma K-Means Dalam Proses Penilaian Kuesioner Kepada Dosen Guna Mendukung Kepuasan Mahasiswa Terhadap Dosen,” J. Ilm. Teknol. dan Rekayasa, vol. 25, no. 2, pp. 161–173, 2020, doi: 10.35760/tr.2020.v25i2.2719.

N. L. P. P. Dewi, I. N. Purnama, and N. W. Utami, “Penerapan Data Mining Untuk Clustering Penilaian Kinerja Dosen Menggunakan Algoritma K-Means (Studi Kasus: STMIK Primakara),” J. Ilm. Teknol. Inf. Asia, vol. 16, no. 2, p. 105, 2022, doi: 10.32815/jitika.v16i2.761.

S. Hendrawan, F. Kartika, and S. Dewi, “Clustering Evaluasi Dosen Universitas Atma Jaya Yogyakarta Menggunakan Metode K- Means,” pp. 1–8, 1965.

N. A. Widiastuti et al., “EVALUASI KINERJA ALGORITMA K-MEANS DENGAN MATRIKS,” vol. 13, no. 1, pp. 1–8, 2022.

Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.

N. Afiasari, N. Suarna, and N. Rahaningsih, “Implementasi Data Mining Transaksi Penjualan Menggunakan Algoritma Clustering dengan Metode K-Means E-commerce K-Means melakukan analisis penerapan Data Mining dalam mengelompokkan jumlah,” vol. 9, pp. 100–110, 2023.

Downloads

Published

2023-08-30

How to Cite

[1]
P. Erikson, B. R. Angkat, E. C. Yosua, M. Sembiring, and M. Nababan, “APPLICATION OF THE K-MEANS CLUSTERING METHOD FOR PERFORMANCE ASSESSMENT BASED ON EDUCATOR COMPETENCE”, JUSIKOM PRIMA, vol. 7, no. 1, pp. 250-254, Aug. 2023.