Herbal Leaf Image Classification Using Convolutional Neural Network (CNN)
DOI:
https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v8i1.5145Abstract
This research delves into the application of Convolutional Neural Networks (CNNs) to address the complexities of identifying herbal leaf species in Indonesia, often challenging due to the vast variations in shape, color, and texture. Utilizing a dataset of herbal leaf images acquired using the Bing Downloader Scrapping technique, a CNN model was trained to classify various plant varieties with a remarkable accuracy rate of 92.66%. Additionally, the analysis of low loss values indicates that the model not only effectively maps the intricate features of each image to the correct category but also efficiently reduces error rates. These findings offer a significant contribution to the context of herbal medicine development and biodiversity conservation, opening up avenues for technological integration in efforts to preserve Indonesia's natural and cultural resources.
References
Adela Regita Azzahra, “Klasifikasi Daun Herbal Menggunakan Metode CNN dan Naïve Bayes dengan Fitur GLCM,” Indones. J. Comput. Sci., vol. 12, no. 4, 2023, doi: 10.33022/ijcs.v12i4.3362.
A. K. S. Yuda and S. Ahmad, “Implementasi Prediksi Tanaman Herbal Menggunakan Algoritma Convolutional Neural Network Berbasis Android.,” Reputasi J. Rekayasa Perangkat Lunak, vol. 4, no. 2, pp. 84–88, 2023, doi: 10.31294/reputasi.v4i2.2403.
R. J. Rumandan, R. Nuraini, N. Sadikin, and Y. Rahmanto, “Klasifikasi Citra Jenis Daun Berkhasiat Obat Menggunakan Algoritma Jaringan Syaraf Tiruan Extreme Learning Machine,” J. Comput. Syst. Informatics, vol. 4, no. 1, pp. 145–154, 2022, doi: 10.47065/josyc.v4i1.2586.
“Direktorat Jenderal Pelayanan Kesehatan.” Accessed: Feb. 07, 2024. [Online].
Available: https://yankes.kemkes.go.id/view_artikel/13/perkembangan-obat-dan-pengobatan-tradisional-dalam-kesehatan-masyarakat-dan- pemanfaatannya-di-rumah-sakit
A. M. Atha and E. Zuliarso, “Deteksi Tanaman Herbal Khusus Untuk Penyakit KulitDan Penyakit Rambut Menggunakan ConvolutionalNeural Network (CNN) Dan Tensorflow,” J. JUPITER, vol. 4 (2), pp. 1–10, 2022.
I. N. Purnama, “Herbal Plant Detection Based on Leaves Image Using Convolutional Neural Network With Mobile Net Architecture,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 6, no. 1, pp. 27–32, 2020, doi: 10.33480/jitk.v6i1.1400.
P. Purwanto and S. Sumardi, “Perancangan Klasifikasi Tanaman Herbal Menggunakan Transfer Learning Pada Algoritma Convolutional Neural Network (CNN),” J. Ilm. Infokam, vol. 18, no. 2, pp. 105–118, 2022, doi: 10.53845/infokam.v18i2.328.
M. H. Ahmad, F. M. Hana, T. G. Pratama, and H. Aulida, “Klasifikasi Empat Jenis Daun Herbal Menggunakan Metode Convolutional Neural Network,” J. Ilmu Komput. dan Mat., vol. 4, no. 2, pp. 69–76, 2023.
A. Herdiansah, R. I. Borman, D. Nurnaningsih, A. A. J. Sinlae, and R. R. Al Hakim, “Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, p. 388, 2022, doi: 10.30865/jurikom.v9i2.4066.
H. Fauzi Jessar, A. Toto Wibowo, and E. Rachmawati, “Klasifikasi Genus Tanaman Sukulen Menggunakan Convolutional Neural Network,” e-Proceeding Eng., vol. 8, no. 2, p. 3180, 2021.
S. P. Backar, P. Purnawansyah, H. Darwis, and W. Astuti, “Hybrid Fourier Descriptor Naïve Bayes dan CNN pada Klasifikasi Daun Herbal,” J. Inform. J. Pengemb. IT, vol. 8, no. 2, pp. 126–133, 2023, doi: 10.30591/jpit.v8i2.5186.
Haryono, Khairul Anam, and Azmi Saleh, “Autentikasi Daun Herbal Menggunakan Convolutional Neural Network dan Raspberry Pi,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 9, no. 3, pp. 278–286, 2020, doi: 10.22146/.v9i3.302.
A. R. Rahmadani et al., “Klasifikasi Citra Digital Daun Herbal Menggunakan Support Vector Machine dan Convolutional Neural Network dengan Fitur Fourier Descriptor,” vol. 16, no. 1, 2024.
E. S. Barus, J. E. Halim, and S. Yessica, “Comparative Analysis of Stroke Classification Using the K-Nearest Neighbor Decision Tree, and Multilayer Perceptron Methods,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 7, no. 1, pp. 155–167, 2023, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v7i1.4083.
Y. Sitinjak, M. Nababan, and M. City, “LIVER DISEASE CLASSIFICATION ANALYSIS,” vol. 7, no. 1, pp. 132–141, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Putra Edi Mujahid, Rosianni Manik, Junpri Sardodo Simbolon, Maria Riska Ratna Sari Sinaga, Siti Aisyah, Marlince Nababan
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish their manuscripts through the Journal of Information Systems and Computer Science agree to the following:
- Copyright to the manuscripts of scientific papers in this Journal is held by the author.
- The author surrenders the rights when first publishing the manuscript of his scientific work and simultaneously the author grants permission / license by referring to the Creative Commons Attribution-ShareAlike 4.0 International License to other parties to distribute his scientific work while still giving credit to the author and the Journal of Information Systems and Computer Science as the first publication medium for the work.
- Matters relating to the non-exclusivity of the distribution of the Journal that publishes the author's scientific work can be agreed separately (for example: requests to place the work in the library of an institution or publish it as a book) with the author as one of the parties to the agreement and with credit to sJournal of Information Systems and Computer Science as the first publication medium for the work in question.
- Authors can and are expected to publish their work online (e.g. in a Repository or on their Organization's/Institution's website) before and during the manuscript submission process, as such efforts can increase citation exchange earlier and with a wider scope.