Laptop Price Prediction with Machine Learning Using Regression Algorithm

Authors

  • Astri Dahlia Siburian Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Daniel Ryan Hamonangan Sitompul a:1:{s:5:"en_US";s:89:"Prodi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia";}
  • Stiven Hamonangan Sinurat Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Andreas Situmorang Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Ruben Ruben Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Dennis Jusuf Ziegel Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Evta Indra Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia

DOI:

https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v6i1.2850

Keywords:

Machine Learning, Regression Algorithm, AutoML, Price Prediction, Laptop

Abstract

Since the COVID-19 pandemic, many activities are now carried out in a Work From Home (WFH) manner. According to data from the Central Statistics Agency (BPS) of East Java, in 2021, large and medium-sized enterprises (UMB) who choose to work WFH partially are 32.37%, and overall WFH is 2.24% (BPS East Java, 2021 ). With this percentage of 32.37%, many people need a work device (in this case, a laptop) that can boost their productivity during WFH. WFH players must have laptops with specifications that match their needs to encourage productivity. To prevent buying laptops at overpriced prices, a way to predict laptop prices is needed based on the specified specifications. This study presents a Machine Learning model from data acquisition (Data Acquisition), Data Cleaning, and Feature Engineering for the Pre-Processing, Exploratory Data Analysis stages to modeling based on regression algorithms. After the model is made, the highest accuracy result is 92.77%, namely the XGBoost algorithm. With this high accuracy value, the model created can predict laptop prices with a minimum accuracy above 80%.

Downloads

Published

2022-09-20

How to Cite

[1]
A. D. Siburian, “Laptop Price Prediction with Machine Learning Using Regression Algorithm”, JUSIKOM PRIMA, vol. 6, no. 1, pp. 87-91, Sep. 2022.

Most read articles by the same author(s)

1 2 3 > >>