THYROID DISEASE CLASSIFICATION ANALYSIS USING XGBOOST MULTICLASS
DOI:
https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v6i1.2831Keywords:
Klasifikasi, Tiroid, Xgboost Multiclass, Machine LearningAbstract
ABSTRAK- Sickness is an unusual condition of the body or mind that causes discomfort, malfunction, or suffering to the sick person. One disorder that occurs due to a lack of health concerns is thyroid disease. The thyroid is a butterfly-shaped endocrine gland near the neck's bottom. The diagnosis of thyroid disease is complicated because the symptoms of thyroid disease can fluctuate based on the rise and fall of thyroid hormones, which increase the utilization of oxygen by the body's cells. In this case, a thyroid examination by a doctor and proper interpretation of clinical data is required to identify thyroid disease. However, the limitations of a doctor due to age and time constraints lead to a lack of interpretation of patient clinical data. Therefore, a study was conducted on the analysis of thyroid disease classification to simplify and speed up the process of diagnosing thyroid disease using the Xgboost Multiclass method, which is expected to get an accuracy value above 90%.
Keywords: Classification, Thyroid, Xgboost Multiclass, Machine Learning
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 haris samuel pranada panjaitan, Agustinus Gulo, Ahmad Haikal Alfi, Okta Jaya Harmaja, Evta Indra
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish their manuscripts through the Journal of Information Systems and Computer Science agree to the following:
- Copyright to the manuscripts of scientific papers in this Journal is held by the author.
- The author surrenders the rights when first publishing the manuscript of his scientific work and simultaneously the author grants permission / license by referring to the Creative Commons Attribution-ShareAlike 4.0 International License to other parties to distribute his scientific work while still giving credit to the author and the Journal of Information Systems and Computer Science as the first publication medium for the work.
- Matters relating to the non-exclusivity of the distribution of the Journal that publishes the author's scientific work can be agreed separately (for example: requests to place the work in the library of an institution or publish it as a book) with the author as one of the parties to the agreement and with credit to sJournal of Information Systems and Computer Science as the first publication medium for the work in question.
- Authors can and are expected to publish their work online (e.g. in a Repository or on their Organization's/Institution's website) before and during the manuscript submission process, as such efforts can increase citation exchange earlier and with a wider scope.