EEG SIGNAL CLASSIFICATION FOR STRESS LEVEL DETECTION USING THE C4.5 METHOD
##plugins.themes.academic_pro.article.main##
Abstract
Stress is a common response to life's pressures that, if left untreated, can negatively impact physical and mental health. Accurately detecting and classifying stress levels is a significant challenge. Electroencephalography (EEG), as a non-invasive method, is capable of recording brain activity and representing a person's emotional state, including stress levels. However, the complexity of EEG data requires effective classification techniques. This study aims to develop a stress level classification system based on EEG signals using the Decision Tree C4.5 method. The EEG dataset was taken from Binjai Prison, with inputs in the form of brain waves (Delta, Theta, Alpha, Beta1, Beta2) and values from various electrodes. The output is a stress classification into three categories: stressed, relaxed, and neutral. The results show that the C4.5 method is able to classify stress levels with 98.68% accuracy, an average precision of 99.19%, and an average recall of 96.29%. The beta2 feature is the most dominant attribute, followed by theta and beta1. Thus, the C4.5 method shows good performance and provides clear interpretation in classifying stress levels based on EEG signals.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Amelya, H., Pratiwi, H., Rahmadania, Z., Alrefi, & Akbari. (2024). Peran Psikologi Industri Dalam Mengurangi Stres Kerja dan Meningkatkan Kesejahteraan Karyawan. Jurnal Inovasi Pendidikan, 5(4), 353–370. https://journalpedia.com/1/index.php/jip/article/view/1285
- Andi, Juliandy, C., Robet, R., Pribadi, O., & Wijaya, R. (2021). Image Authentication Application with Blockchain to Prevent and Detect Image Plagiarism. 2021 6th International Conference on Informatics and Computing, ICIC 2021, December. https://doi.org/10.1109/ICIC54025.2021.9632966
- Ardiyansyah, Sa’adah, R., Lisnawanty, & Purwaningtias, D. (2023). Peningkatan Akurasi Metode C4 . 5 Untuk Memprediksi Kelayakan Kredit Berbasis Stratified Sampling Dan Optimize Selection. Kumpulan Jurnal Ilmu Komputer (KLIK), 10(2), 239–249.
- Badr, Y., Tariq, U., Al-Shargie, F., Babiloni, F., Al Mughairbi, F., & Al-Nashash, H. (2024).
- A review on evaluating mental stress by deep learning using EEG signals. Neural Computing and Applications, 36(21), 12629–12654. https://doi.org/10.1007/s00521-
- 024-09809-5
- Bik, A. H., Anggraeny, F. T., & Puspaningrum, E. Y. (2024). Klasifikasi Penyakit Ginjal Menggunakan Algoritma Hibrida CNN-ELM. JATI (Jurnal Mahasiswa Teknik Informatika), 8(3), 3836–3844. https://doi.org/10.36040/jati.v8i3.9807
- Choi, E., Seo, H. J., Kim, K. H., & Jung, S. Y. (2025). Gender-specific secular trends and related factors of high perceived stress level among Korean older adults: a nation-wide serial cross-sectional study. BMC Public Health, 25(450), 1–10. https://doi.org/10.1186/s12889-025-21644-4
- Ermillian, A., & Nugroho, K. (2024). Perancangan Model Deteksi Potensi Siswa Putus Sekolah Menggunakan Metode Logistic Regression Dan Decision Tree. Jurnal Informatika: Jurnal Pengembangan IT, 9(3), 281–295. https://doi.org/10.30591/jpit.v9i3.8007
- Fasya, A. N., & Sari, R. G. (2024). Peran Elektroensefalografi (EEG) Dalam Diagnostik Epilepsi: Tinjauan Efektivitas Terhadap Deteksi Awal dan Pemantauan. PREPOTIF : Jurnal Kesehatan Masyarakat, 8(3), 7882–7891.
- Ghodang, H., & Hantono. (2020). Metode Penelitian Kuantitatif Konsep Dasar & Aplikasi Analisis Regresi Dengan Jalur SPSS. PT. Penerbit Mitra Grup.
- Hemakom, A., Atiwiwat, D., & Israsena, P. (2023). ECG and EEG based detection and multilevel classification of stress using machine learning for specified genders : A preliminary study. Plos One, 18(9), 1–24. https://doi.org/10.1371/journal.pone.0291070
- Khakim, Z., & Kusrohmaniah, S. (2021). Dasar - Dasar Electroencephalography ( EEG ) bagi Riset Psikologi. Buletin Psikologi, 29(1), 92–115.
- https://doi.org/10.22146/buletinpsikologi.52328
- Larasati, S. S. A., Dewi, E. N. K., Farhansyah, B. H., Bachtiar, F. A., & Pradana, F. (2024).
- Penerapan Decision Tree Dan Random Forest Dalam Deteksi the Application of Decision Tree and Random Forest in Detecting Human Stress Levels Based on Sleep Conditions. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 11(5), 1043–1050. https://doi.org/10.25126/jtiik.2024117993
- Muslim, M. A., Prasetiyo, B., Mawarni, E. L. H., Herowati, A. J., Mirqotussa’adah, Rukmana, S. H., & Nurzahputra, A. (2019). Data Mining Algoritma C4.5.
- Rachmawati, F., Jaenudin, J., Ginting, N. B., & Laksono, P. (2024). Machine Learning for the Model Prediction of Final Semester Assessment (FSA) using the Multiple Linear Regression Method. Jurnal Teknik Informatika, 17(1), 1–9. https://doi.org/10.15408/jti.v17i1.28652
- Sani, M. M., Norhazman, H., Omar, H. A., Zaini, N., & Ghani, S. A. (2014). Support Vector Machine for Classification of Stress Subjects using EEG Signals. Proceedings - 2014 IEEE Conference on System, Process and Control, ICSPC 2014, 12, 127–131. https://doi.org/10.1109/SPC.2014.7086243
- Utari, A., Rini, D. P., Sari, W. K., & Saputra, T. (2023). Klasifikasi Sinyal EEG Untuk Mengenali Jenis Emosi Menggunakan Recuracrent Neural Network. Jurnal Sistem Komputer Dan Informatika (JSON), 5(2), 318. https://doi.org/10.30865/json.v5i2.7162
- Wijaya, B., Sitanggang, D., Lee, B., Angie, V., & Eric Simon Giovanni Siahaan. (2025). Application of Support Vector Machine in Measuring Stress Levels Based on EEG Signals. Jurnal Teknologi Dan Ilmu Komputer Prima (JUTIKOMP), 8(1), 12–25.