Analisis Interaksi Pengguna Sosial Media Sekolah di Palembang Berdasarkan Topik dengan hLDA dan SVM
##plugins.themes.academic_pro.article.main##
Abstract
Instagram is a social media that can be used to promote schools by sharing various documentation of school activities, but schools still have difficulty analyzing engagement to find out the audience's interests. This software development aims to identify topics from captions and analyze the like engagement of each topic. 3,900 caption data were collected from five school Instagram accounts in Palembang with Instaloader. The hLDA algorithm is implemented to identify topics from the caption data, and generate a new dataset that gives the topic information of each caption. This dataset was then classified using SVM and SVM-SMOTE. SMOTE is used to overcome class imbalance in order to improve classification results. In the classification process, the dataset is divided into 70% for training and 30% for testing, with evaluation based on F1-Score. The best results were obtained by SVM-SMOTE, with the best F1-Score value from hLDA 3 Level Dataset (13 labels), reaching 95.68% and the lowest value from hLDA 5 Level Dataset (8 labels), reaching 79.43%. Datasets that have more topics give better classification results. Based on the number of likes for each topic in the hLDA 3 Level Dataset, the most popular topic is topic 11, which includes school facilities, student uniforms, and entertainment events. This information can help schools further develop the most liked topics and improve the less liked topics.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Haris Moch, & Feriyanti Nentin. (2023). Mengoptimalkan Belanja Operasional di Badan Perencanaan Eselon I terhadap Total Pagu Belanja Guna Mewujudkan Organisasi yang Kuat dan Profesional.
- Lindgren, J. (2020). Evaluating Hierarchical LDA Topic Models for Article Categorization. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1447656&dswid=3417
- Listari. (2019, June 21). Topic Modeling Menggunakan Latent Dirchlect Allocation (Part 1): Pre-processing Data dengan Python. https://medium.com/@listari.tari/topic-modelling-menggunakan-latent-dirchlect-allocation-part-1-pre-processing-data-dengan-python-87bf5c580923
- Mahesastra I Made Anditya, & Darmawan I Dewa Made Bayu Atmaja. (2022). Pemodelan Topik Teks Berita Menggunakan DistilBERT. https://jurnal.harianregional.com/jnatia/id-92840
- Novarian Nathanael, Khomsah Siti, & Arifa Amalia Beladinna. (2023). Topic Modelling Tugas Akhir Mahasiswa Fakultas Informatika Institut Teknologi Telkom Purwokerto Meggunakan Metode Latent Dirichlet Allocation. https://journal.ittelkom-pwt.ac.id/index.php/ledger/article/view/991
- Octavianus Kevin. (2023, June 18). Oversampling Method SMOTE for Imbalanced Data.
- Ogunleye, B., Maswera, T., Hirsch, L., Gaudoin, J., & Brunsdon, T. (2023). Comparison of Topic Modelling Approaches in the Banking Context. Applied Sciences, 13(2), 797. https://doi.org/10.3390/app13020797
- Priadana, A., Saputra, A. B., Cahyo, P. W., & Habibi, M. (2021). Health in Digital Era 4.0: Analyzing Reader Engagement Rate on Instagram Account of Government Health Agencies. Proceedings of the International Conference on Health and Medical Sciences (AHMS 2020). https://doi.org/10.2991/ahsr.k.210127.057
- Putri Aulia Mutiara Hatla. (2023, May 22). Instagram Down, 10 Warga Negara Ini Jadi Gak Bisa Eksis. Instagram Down, 10 Warga Negara Ini Jadi Gak Bisa Eksis
- Trivusi. (2022a, July 3). Penjelasan Lengkap Algoritma Support Vector Machine (SVM).
- Trivusi. (2022b, July 4). Apa itu Kernel Trick? Pengertian dan Jenis-jenis Fungsi Kernel SVM.
- Ulinnuha Zahra. (2023). Penggunaan Top2vec Untuk Pemodelan Topik Pada Headline News Portal Berita Berbahasa Indonesia. https://repository.uinjkt.ac.id/dspace/handle/123456789/73325
- W Dadan Dahman. (2021, July 12). Support Vector Machine (SVM). https://medium.com/sysinfo/support-vector-machine-svm-5d95a7d7a547
- Wang, X., Qiao, Y., Hou, Y., Zhang, S., & Han, X. (2021). Measuring technology complementarity between enterprises with an hlda topic model. IEEE Transactions on Engineering Management, 68(5), 1309–1320. https://doi.org/10.1109/TEM.2019.2958113