Application of Support Vector Machine in Measuring Stress Levels Based on EEG Signals

##plugins.themes.academic_pro.article.main##

Bryan Wijaya
Delima Sitanggang
Brandon Lee
Vicky Angie
Eric Simon Giovanni Siahaan

Abstract

This study aims to classify stress levels based on electroencephalography (EEG) signals using the Support Vector Machine (SVM) algorithm. The data used in this study came from 21 subjects with a total of 379 datasets, which included the main variables of Subject, Electrode Channel (E), Theta, Beta 1, and Beta 2. Preprocessing was done to ensure data quality, including blank data elimination, normalization, and feature engineering. One of the main features developed was the Beta Average, which was obtained by calculating the average between Beta 1 and Beta 2, and stress level classification, which was determined based on the comparison between the Beta Average and Theta. The SVM algorithm was applied to build a stress classification model with an initial stage of manual calculation to understand the basic concepts, followed by the Python programming language implementation. The evaluation results show that the developed model has an accuracy of 92.76%, with the highest precision, recall, and f1-score values reaching 100% and the lowest value of 85%. The confusion matrix analysis showed that the model could classify low stress with 100% accuracy, while it reached 87.8% for high stress. The findings of this study prove that the SVM algorithm effectively classifies EEG signal-based stress levels. This model can be the basis for further development of stress detection methods, especially in mental health and neuroinformatics applications.

##plugins.themes.academic_pro.article.details##

How to Cite
Wijaya, B., Sitanggang, D. ., Lee, B. ., Angie, V. ., & Siahaan, E. S. G. . (2025). Application of Support Vector Machine in Measuring Stress Levels Based on EEG Signals. JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), 8(1), 12–25. https://doi.org/10.34012/jutikomp.v8i1.6584

References

  1. Abdusyukur, F. (2023). PENERAPAN ALGORITMA SUPPORT VECTOR MACHINE (SVM) UNTUK KLASIFIKASI PENCEMARAN NAMA BAIK DI MEDIA SOSIAL TWITTER. KOMPUTA : Jurnal Ilmiah Komputer Dan Informatika, 12(1).
  2. Angraina, D., & Putri, A. (2022). Analisis Sentimen Pengguna Aplikasi Google Meet Menggunakan Algoritma Support Vector Machine. Jurnal CoSciTech (Computer Science and Information Technology), 3(3), 472–478. https://doi.org/10.37859/coscitech.v3i3.4260
  3. Aziz, F., Pancasakti Makassar, U., Wahab, A., Keperawatan, I., Karya, U., & Muna, P. (n.d.). JOURNAL PHARMACY AND APPLICATION OF COMPUTER SCIENCES IMPLEMENTASI METODE SUPPORT VECTOR MACHINE UNTUK DETEKSI DINI PERSISTENSI OBAT DALAM FARMASI IMPLEMENTATION OF THE SUPPORT VECTOR MACHINE METHOD FOR EARLY DETECTION OF DRUG PERSISTENCE IN PHARMACY. https://www.kaggle.com/datasets/harbhajansing
  4. Damasela, R., Tomasouw, B. P., & Leleury, Z. A. (2022). PENERAPAN METODE SUPPORT VECTOR MACHINE (SVM) UNTUK MENDETEKSI PENYALAHGUNAAN NARKOBA. PARAMETER: Jurnal Matematika, Statistika Dan Terapannya, 1(2), 111–122. https://doi.org/10.30598/parameterv1i2pp111-122
  5. Eldo, H., Ayuliana, A., Suryadi, D., Chrisnawati, G., & Judijanto, L. (2024). Penggunaan Algoritma Support Vector Machine (SVM) Untuk Deteksi Penipuan pada Transaksi Online. Jurnal Minfo Polgan, 13(2), 1627–1632. https://doi.org/10.33395/jmp.v13i2.14186
  6. Hidayat, T., & Wirananda, H. A. (n.d.). PENGARUH TERAPI PSIKOLOGI DAN TERAPI FISIK DALAM UPAYA REHABILITASI TERHADAP PARA PECANDU NARKOBA DI PANTI REHABILITASI AL KAMAL SIBOLANGIT DESA SUKA MAKMUR SUMATERA UTARA.
  7. Homepage, J., Syukron, H., Fauzi Fayyad, M., Junita Fauzan, F., Ikhsani, Y., & Rizkya Gurning, U. (2022). MALCOM: Indonesian Journal of Machine Learning and Computer Science Comparison K-Means K-Medoids and Fuzzy C-Means for Clustering Customer Data with LRFM Model "Perbandingan K-Means K-Medoids dan Fuzzy C-Means untuk Pengelompokan Data Pelanggan dengan Model LRFM. 2, 76–83.
  8. Jobst, B. C., Bartolomei, F., Diehl, B., Frauscher, B., Kahane, P., Minotti, L., Sharan, A., Tardy, N., Worrell, G., & Gotman, J. (2020). Intracranial EEG in the 21st Century. Epilepsy Currents, 20(4), 180–188. https://doi.org/10.1177/1535759720934852
  9. Juan Felik Sitorus, V., & Kunci, K. (2023). Jurnal JPILKOM (Jurnal Penelitian Ilmu Komputer) ANALISIS ARSITEKTUR JST BERDASARKAN ANGKA KEMATIAN AKIBAT OVERDOSIS NARKOTIKA MENGGUNAKAN ALGORITMA BACKPROPAGATION. In Jurnal JPILKOM (Vol. 1, Issue 2). Online.
  10. Laili, U. H. (n.d.). IMPLEMENTASI DATA MINING NAÏVE BAYES DAN SVM (SUPPORT VECTOR MACHINE) DALAM PENGUMPULAN BERITA KRIMINAL DI INDONESIA PADA MASA PANDEMI COVID-19 Studi Kasus : Situs Berita Detik.com. In Journal of Engineering and Sustainable Technology.
  11. Nurrachmat Hidayat, F. (n.d.). Analisis Sentimen Masyarakat Terhadap Perekrutan PPPK Pada Twitter Dengan Metode Naive Bayes … (Fajar Nurrachmat Hidayat, Sugiyono) Analisis Sentimen Masyarakat Terhadap Perekrutan PPPK Pada Twitter Dengan Metode Naive Bayes Dan Support Vector Machine. Jurnal Sains Dan Teknologi, 5(2), 665–672. https://doi.org/10.55338/saintek.v5i1.1359
  12. Petrescu, A. M., Taussig, D., & Bouilleret, V. (2020). Electroencephalogram (EEG) in COVID-19: A systematic retrospective study. Neurophysiologie Clinique, 50(3), 155–165. https://doi.org/10.1016/j.neucli.2020.06.001
  13. Rabbani, S., Safitri, D., Rahmadhani, N., Sani, A. A. F., & Anam, M. K. (2023). Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(2), 153–160. https://doi.org/10.57152/malcom.v3i2.897
  14. Saputra, A. B., & Judul, H. (2024). FINAL PROJECT REPORT TEXT-BASED SMART SURVEY SYSTEM USING SUPPORT VECTOR MACHINE METHOD FOR FACILITIES SURVEYING AT THE FACULTY OF INDUSTRIAL TECHNOLOGY.
  15. Soufineyestani, M., Dowling, D., & Khan, A. (2020). Electroencephalography (EEG) technology applications and available devices. In Applied Sciences (Switzerland) (Vol. 10, Issue 21, pp. 1–23). MDPI AG. https://doi.org/10.3390/app10217453
  16. Talib, S., Sudin, S., & Suratin, M. D. (n.d.). PENERAPAN METODE SUPPORT VECTOR MACHINE (SVM) PADA KLASIFIKASI JENIS CENGKEH BERDASARKAN FITUR TEKSTUR DAUN.
  17. Wahyuni, S. D., & Kusumodestoni, R. H. (2024). Optimalisasi Algoritma Support Vector Machine (SVM) Dalam Klasifikasi Kejadian Data Stunting. Bulletin of Information Technology (BIT), 5(2), 56–64. https://doi.org/10.47065/bit.v5i2.1247

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.