A SISTEM ELEKTROKARDIOGRAM BERBASIS KECERDASAN BUATAN UNTUK DETEKSI DINI ARITMIA MENGGUNAKAN ALGORITMA DEEP LEARNING
Jurnal
Abstract
Penelitian ini bertujuan mengembangkan sistem klasifikasi kondisi jantung berbasis sinyal elektrokardiogram (EKG) dengan pendekatan algoritma deep learning. Berdasarkan hasil yang diperoleh, sistem yang dibangun menunjukkan performa klasifikasi yang sangat tinggi, dengan akurasi mencapai 99%. Sistem ini mampu secara otomatis mengklasifikasikan lima kondisi jantung: Normal, Abnormal, High Risk Potential, Potential for Arrhythmia, dan Very High Risk Potential. Temuan ini secara langsung menjawab tujuan utama penelitian, yaitu menguji efektivitas model deep learning dalam deteksi dini aritmia.
Meskipun hanya menggunakan data dari 82 subjek, model mampu mencapai precision dan recall yang sangat tinggi, bahkan mencapai skor sempurna (1.00) pada hampir semua kelas, kecuali satu kasus salah klasifikasi pada kelas Normal. Hasil ini menunjukkan bahwa model memiliki kapabilitas generalisasi yang baik, dan mampu mengenali pola kompleks dalam sinyal EKG meskipun data terbatas. Kesalahan klasifikasi tunggal yang terjadi kemungkinan disebabkan oleh kemiripan pola fisiologis antar kelas atau noise pada data, dan ini menjadi catatan penting untuk pengembangan sistem di masa depan.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rivo Ignatius Sibarani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish their manuscripts through the Journal of Information Systems and Computer Science agree to the following:
- Copyright to the manuscripts of scientific papers in this Journal is held by the author.
- The author surrenders the rights when first publishing the manuscript of his scientific work and simultaneously the author grants permission / license by referring to the Creative Commons Attribution-ShareAlike 4.0 International License to other parties to distribute his scientific work while still giving credit to the author and the Journal of Information Systems and Computer Science as the first publication medium for the work.
- Matters relating to the non-exclusivity of the distribution of the Journal that publishes the author's scientific work can be agreed separately (for example: requests to place the work in the library of an institution or publish it as a book) with the author as one of the parties to the agreement and with credit to sJournal of Information Systems and Computer Science as the first publication medium for the work in question.
- Authors can and are expected to publish their work online (e.g. in a Repository or on their Organization's/Institution's website) before and during the manuscript submission process, as such efforts can increase citation exchange earlier and with a wider scope.