KLASIFIKASI SENTIMEN ANALISIS APLIKASI JAKET BOAT PADA ULASAN PLAYSTORE MENGGUNAKAN ALGORITMA NAÏVE BAYES
Abstract
Kemajuan teknologi informasi telah mendorong penggunaan aplikasi transportasi digital, termasuk Jaket Boat. Seiring bertambahnya user, review di Google Play Store menjadi sumber data penting bagi pengembang dalam meningkatkan layanan. Namun, analisis manual terhadap ulasan dalam jumlah besar kurang efisien. Tujuan penelitian ini adalah mengklasifikasikan review pengguna dengan algoritma Naive Bayes. Data dikumpulkan melalui web scraping dan diproses dengan Natural Language Processing (NLP). Proses pre-processing melibatkan pembersihan teks, case folding, tokenisasi, stopword removal, dan stemming. Data yang telah diproses kemudian dikonversi ke bentuk numerik dengan metode TF-IDF (Term Frequency-Inverse Document Frequency) sebelum diklasifikasikan menggunakan model Naive Bayes. Evaluasi model dilakukan dengan menggunakan metrik akurasi, recall, precision, dan F1-score. Penelitian ini menunjukan hasil bahwa algoritma Naive Bayes mampu mengklasifikasikan sentimen ulasan dan akurasi yang didapat yang cukup tinggi. Dengan demikian, penelitian ini dapat membantu pengembang aplikasi dalam memahami permasalahan yang dialami pengguna dan meningkatkan kualitas layanan berdasarkan hasil sentimen analisis.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 aditya aditya yogi pratama

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish their manuscripts through the Journal of Information Systems and Computer Science agree to the following:
- Copyright to the manuscripts of scientific papers in this Journal is held by the author.
- The author surrenders the rights when first publishing the manuscript of his scientific work and simultaneously the author grants permission / license by referring to the Creative Commons Attribution-ShareAlike 4.0 International License to other parties to distribute his scientific work while still giving credit to the author and the Journal of Information Systems and Computer Science as the first publication medium for the work.
- Matters relating to the non-exclusivity of the distribution of the Journal that publishes the author's scientific work can be agreed separately (for example: requests to place the work in the library of an institution or publish it as a book) with the author as one of the parties to the agreement and with credit to sJournal of Information Systems and Computer Science as the first publication medium for the work in question.
- Authors can and are expected to publish their work online (e.g. in a Repository or on their Organization's/Institution's website) before and during the manuscript submission process, as such efforts can increase citation exchange earlier and with a wider scope.