Implementation Of The ARIMA Method In Predicting LQ 45 Stock Prices (UNTR Issuer)
DOI:
https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v8i1.5656Abstract
The implementation of technology is used in running businesses or activities that generate profits, such as predicting investments on the stock exchange through transaction data in the transaction data base. Machine learning is an algorithm that produces an approximation function that connects input variables so that it has the potential to be implemented in stock predictions. Stock investment has the characteristics of high risk - high return. Losses are caused by investors' lack of knowledge. Stock value analysis is divided into two, namely fundamental analysis and technical analysis. Technical analysis uses data or records about the market to try to access the demand and supply of a particular stock or the market as a whole. Based on the problems found by investors or bankers, this research will use the autoregressive integrated moving average (ARIMA) method to predict stock price movements. The Arima method consists of four stages, namely identifying time series methods, estimating parameters for alternative methods, testing methods and estimating time series values. Based on these problems, the ARIMA method will be used to predict stock movements. The Arima model (1,0,2) with RMS: 2200.576849857124 successfully predicted for the next 180 days
References
W. Wei, 2006, Time Series Analysis Univariate and Multivariate. London:
Gujarati, Damodar N. 2003. Basic Econometrics. Forth Edition, Mc Graw Hill.
Agustin, I. N., & Fariono, F. (2023). Perbandingan Analisis Teknikal dengan Pendekatan Moving Average dan Parabolic SAR dalam Memprediksi Pengembalian Saham pada Indeks Saham LQ45. Ekonomis: Journal of Economics and Business, 7(1), 606-613. Doi: http://dx.doi.org/10.33087 /ekonomis.v7i1.769
Adiningtyas, S., & Hakim, L. (2022). Pengaruh pengetahuan investasi, motivasi, dan uang saku terhadap minat mahasiswa berinvestasi di pasar modal syariah dengan risiko investasi sebagai variabel intervening. Jurnal Ilmiah Ekonomi Islam, 8(1), 474–482. DOI: http://dx.doi.org/10.29040/jiei.v8i1.4609
Andini, Y., Hardinata, J. T., & Purba, Y. P. (2022). Penerapan Data Mining Terhadap Tata Letak Buku Di Perpustakaan Sintong Bingei Pematangsiantar Menggunakan Metode Apriori. Jurnal Times, 11(1), 9–15. https://doi.org/10.51351/jtm.11.1.2022661
Ariyanti, V. P., & Yusnitasari, T. (2023). Comparison of ARIMA and SARIMA for Forecasting Crude Oil Prices. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(2), 405–413. DOI: https://doi.org/10.29207/resti.v7i2.4895
Asrirawan, A., Permata, S. U., & Fauzan, M. I. (2022). Pendekatan Univariate Time Series Modelling untuk Prediksi Kuartalan Pertumbuhan Ekonomi Indonesia Pasca Vaksinasi COVID-19. Jambura Journal of Mathematics, 4(1), 86–103. DOI: https://doi.org/10.34312/jjom.v4i1.11717
Chusanudin, A., & Munandar, A. (2022). Pengaruh Pengetahuan Keuangan Terhadap Niat Investasi Saham di Indonesia dengan Persepsi Risiko sebagai Variabel Moderasi. Syntax Literate; Jurnal Ilmiah Indonesia, 7(4), 5051–5071. DOI: https://doi.org/10.36418/syntax-literate.v7i4.6880
Desy, D. I. P., Qur’ana, T. W., & Dharmawati, A. (2023). Pemodelan Spasial untuk Analisa Produksi Padi Integrasi Machine Learning. Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, 14(2), 128-137. DOI: https://doi.org/10.31849/digitalzone.v14i2.16256
Damaliana, A. T., Muhaimin, A., & Riyantoko, P. A. (2023, November). Peramalan Lonjakan Kasus Harian Covid-19 Di Indonesia Dengan Model Arima. In Prosiding Seminar Nasional Sains Data (Vol. 3, No. 1, pp. 184-189). Doi : https://doi.org/10.33005/senada.v3i1.112
Elga, R., Murni, S., & Tulung, J. E. (2022). Reaksi Pasar Modal Terhadap Peristiwa Sebelum Dan Sesudah Pengumuman Covid-19 Di Indonesia (Event Study Pada Indeks LQ45). Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, 10(1), 1052-1060. https://doi.org/10.35794/emba.v10i1.38703
Ernayani, R., Asnawi, M. I., Lumentah, N. R., Moridu, I., & Lestari, W. (2023). Literature Review: Prospek Peningkatan Suku Bunga terhadap Nilai Perusahaan dan Return Saham. Journal of Economic, Bussines and Accounting (COSTING), 6(2), 1168–1180. DOI: https://doi.org/10.31539/costing.v6i2.4906
Farosanti, L. (2022). Analisa Peramalan Penjualan Alat Kesehatan dan Laboratorium di PT. Tristania Global Indonesia Menggunakan Metode ARIMA. JIMP (Jurnal Informatika Merdeka Pasuruan), 7(1). DOI: http://dx.doi.org/10.37438/jimp.v7i1.428
Fillahi, A. F. B., & Maika, M. R. (2023). ANALISIS BIBLIOMETRIK PASAR MODAL SYARIAH: PUBLIKASI ILMIAH DI NEGARA-NEGARA SELURUH DUNIA. Jurnal Tabarru’: Islamic Banking and Finance, 6(1), 164–178. https://doi.org/10.25299/jtb.2023.vol6(1).12110
Głowania, S., Kozak, J., & Juszczuk, P. (2023). Knowledge Discovery in Databases for a Football Match Result. Electronics (Switzerland), 12(12), 2712. https://doi.org/10.3390/electronics12122712
Hasibuan, E., & Karim, A. (2022). Implementasi Machine Learning untuk Prediksi Harga Mobil Bekas dengan Algoritma Regresi Linear berbasis Web. Jurnal Ilmiah Komputasi, 21(4), 595-602. Doi : https://doi.org/10.32409/jikstik.21.4.3327
HIDAYAT, M. Z. (n.d.). Peramalan Jumlah Wisatawan Menggunakan Metode Time Series Arima dan Feed-Forward Neural Network (Studi Kasus: Tempat Wisata Pasir Putih, Situbondo).
Hijrah, M., Rachman, H., & Rahayu, P. I. (2023). Peramalan Harga Saham Perusahaan Perbankan dengan Market Capitalization Terbesar di Indonesia Pasca-Covid19. Journal of Mathematics: Theory and Applications, 5(2), 95-99. Doi : https://doi.org/10.31605 /jomta.v5i2.3238
Huda, M., Azizah, R. N. N., & Setyana, A. N. (2023). IMPLEMENTASI METODE ARMA DALAM PERAMALAN INFLASI PROVINSI BANTEN. Jurnal Bayesian: Jurnal Ilmiah Statistika Dan Ekonometrika, 3(2), 210–221. https://doi.org/10.46306/bay.v3i2.66
Idris, M., Adam, R. I., Brianorman, Y., Munir, R., & Mahayana, D. (2022). Kebenaran dalam Perspektif Filsafat Ilmu Pengetahuan dan Implementasi dalam Data Science dan Machine Leaning. Jurnal Filsafat Indonesia, 5(2), 173–181. https://doi.org/10.23887/jfi.v5i2.42207
Kristhy, M. E., Febrizha, M., Satya, O. R. S., Kumala, L., Ande, P. P., & Hidayah, N. (2022). ERLINDUNGAN HUKUM BAGI INVESTOR ASING DI INDONESIA. Jurnal Komunikasi Hukum (JKH), 8(2), 79-106. Doi. https://doi.org/10.23887/jkh.v8i2.47127
Jansevskis, M., & Osis, K. (2023). Knowledge Discovery Frameworks and Characteristics. Baltic Journal of Modern Computing, 11(4), 686–702. https://doi.org/10.22364/bjmc.2023.11.4.08
Lestari, W., Juliza, M., Angreni, P., Rahmawati, S., Fitria, I. M., & Hendrianingsih, N. (2023). Peramalan Harga Obligasi Pemerintah Mengunakan Model ARIMA Box-Jenkins. JIIP-Jurnal Ilmiah Ilmu Pendidikan, 6(11), 9502–9506. http://dx.doi.org/10.54371/jiip.v6i11.3280
Marufi, A. (2023). Arif Ma’rufi UJI PERFORMA MODEL AUTO-ARIMA UNTUK PRAKIRAAN CURAH HUJAN BULANAN TAHUN 2021 DI PROVINSI JAMBI: ASSESSMENT OF AUTOMATED ARIMA MODEL FOR MONTHLY RAINFALL PREDICTION OVER JAMBI PROVINCE. Buletin Meterologi, Klimatologi Dan Geofisika, 3(1), 1–9.
Mauliza, A. Y. I., & Canggih, C. (2023). MINAT BERINVESTASI PADA SAHAM SYARIAH: PENGARUH PENGETAHUAN INVESTASI, SISTEM ONLINE TRADING SYARIAH, DAN MOTIVASI. ECONBANK: Journal of Economics and Banking, 5(1), 36–50. DOI: https://doi.org/10.35829/econbank.v5i1.284
Marlina, W. A., Armijal, A., & Nisa, M. K. (2023). ANALISIS PERAMALAN BOX JENKINS TERHADAP PENJUALAN DI UMKM IM LELE, PAYAKUMBUH. Industri Inovatif: Jurnal Teknik Industri, 13(2), 105-115. Doi: https://doi.org/ 10.36040/industri.v13i2.6526
Nabella, S. D., Munandar, A., & Tanjung, R. (2022). Likuiditas, solvabilitas, aktivitas dan profitabilitas terhadap harga saham pada perusahaan sektor tambangan batu bara yang terdaftar di Bursa Efek Indonesia. Measurement Jurnal Akuntansi, 16(1), 97-102. DOI:https://doi.org/10.33373/mja.v16i1.4264
Nada, D. Q., & Syaiful, S. (2022). Faktor-Faktor Yang Mempengaruhi Minat Mahasiswa Berinvestasi Di Pasar Modal Pada Masa Pandemi Covid-19. Maksimum: Media Akuntansi Universitas Muhammadiyah Semarang, 12(1), 42-52. Doi : https://doi.org/10.26714/mki.12.1.2022.42-52
Nasution, S. A., Lasmi, A., Silalahi, P. R., & Nasution, A. (2023). Efektivitas Galeri Investasi Syariah Bursa Efek Indonesia (GIS BEI) UINSU Medan Dalam Meningkatkan Literasi Pasar Modal. El-Mal: Jurnal Kajian Ekonomi & Bisnis Islam, 4(3),548-559. Doi:https://doi.org/10.47467/elmal.v4i3.1931
Nurani, A. T., Setiawan, A., & Susanto, B. (2023). Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma. Jurnal Sains Dan Edukasi Sains, 6(1), 34–43. https://doi.org/10.24246/juses.v6i1p34-43
Nurcahyo, J. A., & Sasongko, T. B. (2023). Hyperparameter Tuning Algoritma Supervised Learning untuk Klasifikasi Keluarga Penerima Bantuan Pangan Beras. Indonesian Journal of Computer Science, 12(3).
Palacios, C. A., Reyes-Suárez, J. A., Bearzotti, L. A., Leiva, V., & Marchant, C. (2021). Knowledge discovery for higher education student retention based on data mining: Machine learning algorithms and case study in chile. Entropy, 23(4), 485. https://doi.org/10.3390/e23040485
Pangaribuan, J. J., Fanny, F., Barus, O. P., & Romindo, R. (2023). Prediksi Penjualan Bisnis Rumah Properti Dengan Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA). Jurnal Sistem Informasi Bisnis, 13(2), 154-161. Doi: https://doi.org/10.21456 /vol13iss2pp154-161
Prasetio, R., Iswanaji, C., & Khotijah, S. A. (2023). Pengaruh Persepsi Return, Risiko, Pengetahuan dan Religiusitas Terhadap Minat Berinvestasi di Pasar Modal Syariah. Al-Intaj: Jurnal Ekonomi Dan Perbankan Syariah, 9(1), 88–108. DOI: http://dx.doi.org/10.29300/aij.v9i1.2706
Pratama, B. B., & Wijayanti, D. (2023). PERANCANGAN MODEL EKONOMI KREATIF 5.0 BERBASIS DIGITAL SOCIAL INNOVATION. Jurnal Fokus Manajemen Bisnis, 13(1), 76-90.
Putri, D. I., & Putra, M. Y. (2023). Komparasi Algoritma dalam Memprediksi Perubahan Harga Saham GOTO Menggunakan RapidMiner. Jurnal Khatulistiwa Informatika, 11(1), 14-20. DOI: https://doi.org/10.31294/jki.v11i1.16153.g6018
Rahayu, P. I. R., Hidayatullah, M., & Hijrah, M. (2023). Implementation Vector Autoregressive (Var) On Rice Production and Rice Productivity Data in Indonesia. Jurnal Matematika, Statistika Dan Komputasi, 19(3), 580–592. https://doi.org/10.20956/j.v19i3.24881
Rapi, A. (2022). Penerapan Model ARIMA Dalam Memprediksi Penjualan Produk Minuman Teh Botol Sosro Ukuran 350 mL. Inventory-Industrial Vocational E-Journal On Agroindustry, 3(2), 69-82. Doi : http://dx.doi.org/10.52759/inventory.v3i2.99
Riyandi, A., Aripin, A., Ardiansyah, I. N., Dany, R., & Yusrizal, Y. (2023). Analisis Data Mining untuk Prediksi Harga Saham: Perbandingan Metode Regresi Linier dan Pola Historis. Jurnal Teknologi Sistem Informasi, 4(2), 278–288. DOI: https://doi.org/10.35957/jtsi.v4i2.5158
Rizal, M., & Yustanti, W. (2023). Peramalan Close Price Mata Uang Crypto Solana Menggunakan Jaringan Syaraf Tiruan Model Backpropagation. Journal of Emerging Information System and Business Intelligence (JEISBI), 4(4), 37-46.
Samosir, V. B., Widodo, A. M., Anwar, N., Sekti, B. A., & Erzed, N. (2024). Identifikasi Outlier Menggunakan Teknik Data Mining Clustering Untuk Analisis Data Tracer Study Pada Fakultas Ilmu Komputer Universitas Esa Unggul. IKRA-ITH Informatika: Jurnal Komputer Dan Informatika, 8(1), 162–174. https://doi.org/10.37817/ikraith-informatika.v8i1.3211
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
Setyaningtyas, S., Nugroho, B. I., & Arif, Z. (2022). TINJAUAN PUSTAKA SISTEMATIS PADA DATA MINING: STUDI KASUS ALGORITMA K-MEANS CLUSTERING. J Teknoif Teknik Informatika, 10, 52-61. DOI 10.21063/jtif.2022.V10.2.52-61
Shu, X., & Ye, Y. (2023). Knowledge Discovery: Methods from data mining and machine learning. Social Science Research, 110, 102817. https://doi.org/10.1016/j.ssresearch.2022.102817
Soepriyono, G., & Triayudi, A. (2023). Perbandingan Kinerja Algoritma Clustering Data Mining Untuk Prediksi Harga Saham Pada Reksadana dengan Davies Bouldin Index. JURNAL MEDIA INFORMATIKA BUDIDARMA, 7(4), 2061-2073. DOI : http://dx.doi.org/10.30865 /mib.v7i4.6623
Sun, J. (2021). Forecasting COVID-19 pandemic in Alberta, Canada using modified ARIMA models. Computer Methods and Programs in Biomedicine Update, 1, 100029. https://doi.org/10.1016/j.cmpbup.2021.100029
Suparmadi, S., & Ramadhani, A. (2022). SISTEM ESTIMASI PENCAPAIAN TARGET PROFIT MENGGUNAKAN MODEL REGRESI BERBASIS MACHINE LEARNING. JOURNAL OF SCIENCE AND SOCIAL RESEARCH, 5(3), 703-708.DOI: https://doi.org/10.54314/ jssr.v5i3.1042
Suryani, A. M., & Noviari, N. (2023). Reaksi Pasar Modal terhadap Pengumuman Kebijakan Insentif Pajak Penjualan atas Barang Mewah. E-Jurnal Akuntansi, 33(2), 302. http://dx.doi.org/10.24843/EJA.2023.v33.i02.p02
Yutanesy, J., & Suhendah, R. (2022). Perubahan Harga, Volume Saham, dan Kapitalisasi Pasar Selama COVID-19 pada Sektor Keuangan. Jurnal Ekonomi, 27(03), 159–181. https://doi.org/10.24912/je.v27i03.871
Utami, D., Mutmainah, K., & Jannati, N. B. (2023). Analisis Penilaian Harga Wajar Saham Dan Keputusan Investasi Saham Secara Fundamental Dengan Menggunakan Metode Price Earning Ratio (Per) Dan Price To Book Value. Journal Of Economic, Business And Engineering (Jebe), 5(1), 167-184. Doi : https://doi.org/10.32500/jebe.v5i1.5646
Yutanesy, J., & Suhendah, R. (2022). Perubahan Harga, Volume Saham, dan Kapitalisasi Pasar Selama COVID-19 pada Sektor Keuangan. Jurnal Ekonomi, 27(03), 159-181. Doi : https://doi.org/10.24912 /je.v27i03.871
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tegas Hadiyanto, Sarjon Defit, Rini Sovia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish their manuscripts through the Journal of Information Systems and Computer Science agree to the following:
- Copyright to the manuscripts of scientific papers in this Journal is held by the author.
- The author surrenders the rights when first publishing the manuscript of his scientific work and simultaneously the author grants permission / license by referring to the Creative Commons Attribution-ShareAlike 4.0 International License to other parties to distribute his scientific work while still giving credit to the author and the Journal of Information Systems and Computer Science as the first publication medium for the work.
- Matters relating to the non-exclusivity of the distribution of the Journal that publishes the author's scientific work can be agreed separately (for example: requests to place the work in the library of an institution or publish it as a book) with the author as one of the parties to the agreement and with credit to sJournal of Information Systems and Computer Science as the first publication medium for the work in question.
- Authors can and are expected to publish their work online (e.g. in a Repository or on their Organization's/Institution's website) before and during the manuscript submission process, as such efforts can increase citation exchange earlier and with a wider scope.