Application Of Support Vector Machine Method To Predict Heart Disease

Main Article Content

Golfrid Heraldi Simatupang
Elvis Ompusunggu

Abstract

Heart attack disease is when the arteries are blocked by fatty deposits This results in symptoms like chest discomfort and dyspnea. Furthermore, Damage to the heart muscle can result from obstructed or reduced blood flow to the heart. Heart attack disease remains Indonesia’s greatest cause of death as of right now. The current problem is that it is very difficult to predict heart disease and identify heart disease. The right method is needed to predict heart disease. The purpose of this study was to calculate the level of accuracy of the Support Vector Machine method in predicting heart attack disease. The research findings and data analysis conducted utilizing the Support Vector Machine algorithm yielded an accuracy rate of 91.8%. Thus, it can be said that in comparison to the K-Nearest Neighbor approach, the support vector machine algorithm is superior in predicting the development of heart attack disease, which achieved an accuracy of 88%, and Logistic Regression, which achieved 83% accuracy.


Keywords: Heart Attack, Support Vector Machine, Prediction.

Article Details

How to Cite
[1]
G. H. Simatupang and E. Ompusunggu, “Application Of Support Vector Machine Method To Predict Heart Disease”, JUSIKOM PRIMA, vol. 8, no. 1, pp. 318-329, Sep. 2024.
Section
Articles

References

Supriyatna, H. A., Away, Y., & Zulhelmi, Z. "Desain sistem Internet of Things (IoT) untuk pemantauan dan prediksi gejala serangan jantung." Jurnal Komputer, Informasi Teknologi, dan Elektro, vol. 4, no. 1, 2019.

Dhany, H. W. "Performa Algoritma K-Nearest Neighbour dalam Memprediksi Penyakit Jantung." In Seminar Nasional Informatika (SENATIKA), pp. 176-179, 2021, June.

Al Azhima, S. A. T., Darmawan, D., Hakim, N. F. A., Kustiawan, I., Al Qibtiya, M., & Syafei, N. S. "Hybrid Machine Learning Model untuk memprediksi Penyakit Jantung dengan Metode Logistic Regression dan Random Forest." Jurnal Teknologi Terpadu, vol. 8, no. 1, pp. 40-46, 2022.

Annisa, R. "Analisis Komparasi Algoritma Klasifikasi Data Mining Untuk Prediksi Penderita Penyakit Jantung." JTIK (Jurnal Teknik Informatika Kaputama), vol. 3, no. 1, pp. 22-28, 2019.

Putra, P. D., & Rini, D. P. "Prediksi Penyakit Jantung dengan Algoritma Klasifikasi." In Annual Research /Seminar (ARS), vol. 5, no. 1, pp. 95-99, 2020, February.

Pangaribuan, J. J., Tanjaya, H., & Kenichi, K. "Mendeteksi Penyakit Jantung Menggunakan Machine Learning Dengan Algoritma Logistic Regression." Journal Information System Development (ISD), vol. 6, no. 2, pp. 1-10, 2021.

Nawawi, H. M., Purnama, J. J., & Hikmah, A. B. "Komparasi Algoritma Neural Network dan Naive Bayes Untuk Memprediksi Penyakit Jantung." Jurnal Pilar Nusa Mandiri, vol. 15, no. 2, pp. 189-194, 2019.

Gunawan, M. I., Sugiarto, D., & Mardianto, I. "Peningkatan Kinerja Akurasi Prediksi Penyakit Diabetes Mellitus Menggunakan Metode Grid Seacrh pada Algoritma Logistic Regression." JEPIN (Jurnal Edukasi Dan Penelitian Informatika), vol. 6, no. 3, pp. 280- 284, 2020.

Achmad, A. I. "Metode Regresi Probit Biner untuk Pemodelan Faktor- Faktor yang Mempengaruhi Diagnosis Penyakit Jantung." Jurnal Riset Statistika, pp. 27-33, 2022.

Rahayu, S., Subekhi, A., Astuti, D., Widaningsih, I., Sartika, I., Nurhayani, N., ... & Rafidah, R."UPAYA MEWASPADAI SERANGAN JANTUNG MELALUIPENDIDIKAN KESEHATAN."JMM (Jurnal Masyarakat Mandiri), vol. 4, no. 2, pp. 163-171, 2020.

Majid, A. M., & Miharja, M. N. D. "PENERAPAN METODE DISCRETIZATION DAN ADABOOST UNTUK MENINGKATKAN AKURASI ALGORITMA KLASIFIKASI DALAM MEMPREDIKSI PENYAKIT JANTUNG." Indonesian Journal of Business Inrelligence (IJUBI), vol. 5, no. 2, pp. 70-75, 2022

Riani, A., Susianto, Y., & Rahman, N. "Implementasi Data Mining Untuk Memprediksi Penyakit Jantung Mengunakan Metode Naive Bayes." Journal of Innovation Information Technology and Application (JINITA), vol. 1, no. 1, pp. 25-34, 2019.

Andiani, L., Sukemi, S., & Rini, D. P. "Analisis Penyakit Jantung Menggunakan Metode KNN Dan Random Forest." In Annual Research Seminar (ARS), vol. 5, no. 1, pp. 165- 169, 2020, February.

Karyatin, K. "Faktor-Faktor Yang Berhubungan Dengan Kejadian Penyakit Jantung Koroner." Jurnal Ilmiah Kesehatan, vol. 11, no. 1, pp. 37-43.

Bianto, M. A., Kusrini, K., & Sudarmawan, S. "Perancangan Sistem Klasifikasi Penyakit Jantung Mengunakan Naïve Bayes." Creative Information Technology Journal, vol. 6, no. 1, pp. 75-83, 2020.

Qomariyah, N., Hamzah, N., & Mustika, W. P. "PENERAPAN METODE ARTIFICIAL NEURAL NETWORK UNTUK MENDETEKSI SERANGAN JANTUNG DI RS AWAL BROS BEKASI." INTI Nusa Mandiri, vol. 13, no. 1, pp. 27-32, 2019.

Apriyatmoko, R., & Aini, F. "Remaja Mengenali Serangan Jantung Koroner." INDONESIAN JOURNAL OF COMMUNITY EMPOWERMENT (IJCE), vol. 2, no. 2, 2020.

Derisma, D. "Perbandingan Kinerja Algoritma untuk Prediksi Penyakit Jantung dengan Teknik Data Mining." Journal of Applied Informatics and Computing, vol. 4, no. 1, pp. 84-88, 2020.

Utomo, D.P., & Mesran, M. "Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung." Jurnal Media Informatika Budidarma, vol. 4, no. 2, pp. 437-444, 2020.

Aripin, H. A. "OUTCOME PREDICTION UNTUK PENYAKIT JANTUNG DENGAN ALGORITMA ARTIFICIAL NEURAL NETWORK." INFOKOM (Informatika &Komputer), vol. 9, no. 1, pp. 30-45, 2021.

Sitanggang ,D., Nicholas, Wilson ,V., Sinaga ,A.R.A, dan Simanjuntak ,A.D. “IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI PENYAKIT JANTUNG MENGGUNAKAN METODE K-NEAREST NEIGHBOR DAN LOGISTIC REGRESSION” Jurnal Tekinkom (Teknik Informasi dan Komputer), vol 5, no. 2, pp. 493-501 ,2022