Sentiment Analysis of Public Opinions Regarding "Ideas of Presidential Candidates" in YouTube Video Comments with Robustly Optimized BERT Pretraining Approach
Main Article Content
Abstract
Social media and video-sharing platforms such as YouTube have become one of the primary sources of information and social interaction in modern society. In politics, YouTube has become essential for spreading ideas, campaign platforms, and opinions about the presidential election. Using the pre-trained Indonesian Roberta Base Sentiment Classifier Model, the data obtained from YouTube comments will be divided into three labels: positive, negative, and neutral. The results of this study are the accuracy for each sentiment label, where the value for positive is 93%, the negative is 90.5%, and the neutral is 93.04%. Residents give more positive comments to presidential candidate Prabowo Subianto, with a positive value of 54.13%, followed by Anies Baswedan at 42.8% and Ganjar Pranowo at 31.91%.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish their manuscripts through the Journal of Information Systems and Computer Science agree to the following:
- Copyright to the manuscripts of scientific papers in this Journal is held by the author.
- The author surrenders the rights when first publishing the manuscript of his scientific work and simultaneously the author grants permission / license by referring to the Creative Commons Attribution-ShareAlike 4.0 International License to other parties to distribute his scientific work while still giving credit to the author and the Journal of Information Systems and Computer Science as the first publication medium for the work.
- Matters relating to the non-exclusivity of the distribution of the Journal that publishes the author's scientific work can be agreed separately (for example: requests to place the work in the library of an institution or publish it as a book) with the author as one of the parties to the agreement and with credit to sJournal of Information Systems and Computer Science as the first publication medium for the work in question.
- Authors can and are expected to publish their work online (e.g. in a Repository or on their Organization's/Institution's website) before and during the manuscript submission process, as such efforts can increase citation exchange earlier and with a wider scope.
References
Daffa, M., Rifqi, A., & Rizky Yunianto, D. (2023). ANALISIS SENTIMEN BERITA PROGRAM CSR PADA APLIKASI SR-APP OLAHKARSA. Jurnal Informatika dan Teknik Elektro Terapan, 11(3), 2830–7062. https://doi.org/10.23960/jitet.v11i3%20s1.3413
Farah Zhafira, D., Rahayudi, B., & Korespondensi, P. (2021). ANALISIS SENTIMEN KEBIJAKAN KAMPUS MERDEKA MENGGUNAKAN NAIVE BAYES DAN PEMBOBOTAN TF-IDF BERDASARKAN KOMENTAR PADA YOUTUBE (Vol. 2, Nomor 1).
Laia, Y.; Berutu, S.; Sumihar, Y.; Budiati, H. Implementasi Library Textblob Dan Metode Support Vector Machine Pada Analisis Sentimen Pelanggan Terhadap Jasa Transportasi Online. bits 2024, 6, 1−10.
Lunando, E., & Purwarianti, A. (2013). Indonesian Social Media Sentiment Analysis with Sarcasm Detection.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. http://arxiv.org/abs/1907.11692
Multi Fani, S., & Santoso, R. (2021). PENERAPAN TEXT MINING UNTUK MELAKUKAN CLUSTERING DATA TWEET AKUN BLIBLI PADA MEDIA SOSIAL TWITTER MENGGUNAKAN K-MEANS CLUSTERING. 10, 583–593. https://ejournal3.undip.ac.id/index.php/gaussian/
Matresya Matulatuwa, F., Sediyono, E., & Iriani, A. (2017). TEXT MINING DENGAN METODE LEXICON BASED UNTUK SENTIMENT ANALYSIS PELAYANAN PT. POS INDONESIA MELALUI MEDIA SOSIAL TWITTER (Vol. 2, Issue 3).
Sihab, N. (n.d.). Anies Baswedan Bicara Gagasan. Retrieved September 27, 2023, from https://www.youtube.com/watch?v=kiaKPHMABuc
Sihab, N. (n.d.). Prabowo Subianto Bicara Gagasan. Retrieved September 27, 2023, from https://www.youtube.com/watch?v= V4W5Nokc7MU
Sihab, N. (n.d.). Ganjar Pranowo Bicara Gagasan. Retrieved September 27, 2023, from https://www.youtube.com/watch?v=2YXKMHNevpo
Vira, A., & Reynata, E. (2022). PENERAPAN YOUTUBE SEBAGAI MEDIA BARU DALAM KOMUNIKASI MASSA. Komunikologi : Jurnal Ilmiah Ilmu Komunikasi, 19(2), 96–101.
Wongso, W. (2023). Indonesian RoBERTa Base Sentiment Classifier. https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier. https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier
Yunitasari, Y., Musdholifah, A., & Sari, A. K. (2019). Sarcasm Detection For Sentiment Analysis in Indonesian Tweets. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 13(1), 53. https://doi.org/10.22146/ijccs.41136
Zain, M. M., Simbolon, R. N., Sulung, H., & Anwar, D. Z. (2021). Jurnal Politeknik Caltex Riau Analisis Sentimen Pendapat Masyarakat Mengenai Vaksin Covid-19 Pada Media Sosial Twitter dengan Robustly Optimized BERT Pretraining Approach. Dalam Jurnal Komputer Terapan (Vol. 7, Nomor 2). https://jurnal.pcr.ac.id/index.php/jkt/
Zendrato, A.; Berutu, S.; Sumihar, Y. P.; Budiati, H. Pengembangan Model Klasifikasi Sentimen Dengan Pendekatan Vader Dan Algoritma Naive Bayes Terhadap Ulasan Aplikasi Indodax. josh 2024, 5, 755-764.