Sentiment Analysis of Public Opinions Regarding "Ideas of Presidential Candidates" in YouTube Video Comments with Robustly Optimized BERT Pretraining Approach

Authors

  • Yoel Pieter Sumihar Universitas Kristen Immanuel

DOI:

https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v8i1.5350

Abstract

Social media and video-sharing platforms such as YouTube have become one of the primary sources of information and social interaction in modern society. In politics, YouTube has become essential for spreading ideas, campaign platforms, and opinions about the presidential election. Using the pre-trained Indonesian Roberta Base Sentiment Classifier Model, the data obtained from YouTube comments will be divided into three labels: positive, negative, and neutral. The results of this study are the accuracy for each sentiment label, where the value for positive is 93%, the negative is 90.5%, and the neutral is 93.04%. Residents give more positive comments to presidential candidate Prabowo Subianto, with a positive value of 54.13%, followed by Anies Baswedan at 42.8% and Ganjar Pranowo at 31.91%.

References

Daffa, M., Rifqi, A., & Rizky Yunianto, D. (2023). ANALISIS SENTIMEN BERITA PROGRAM CSR PADA APLIKASI SR-APP OLAHKARSA. Jurnal Informatika dan Teknik Elektro Terapan, 11(3), 2830–7062. https://doi.org/10.23960/jitet.v11i3%20s1.3413

Farah Zhafira, D., Rahayudi, B., & Korespondensi, P. (2021). ANALISIS SENTIMEN KEBIJAKAN KAMPUS MERDEKA MENGGUNAKAN NAIVE BAYES DAN PEMBOBOTAN TF-IDF BERDASARKAN KOMENTAR PADA YOUTUBE (Vol. 2, Nomor 1).

Laia, Y.; Berutu, S.; Sumihar, Y.; Budiati, H. Implementasi Library Textblob Dan Metode Support Vector Machine Pada Analisis Sentimen Pelanggan Terhadap Jasa Transportasi Online. bits 2024, 6, 1−10.

Lunando, E., & Purwarianti, A. (2013). Indonesian Social Media Sentiment Analysis with Sarcasm Detection.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. http://arxiv.org/abs/1907.11692

Multi Fani, S., & Santoso, R. (2021). PENERAPAN TEXT MINING UNTUK MELAKUKAN CLUSTERING DATA TWEET AKUN BLIBLI PADA MEDIA SOSIAL TWITTER MENGGUNAKAN K-MEANS CLUSTERING. 10, 583–593. https://ejournal3.undip.ac.id/index.php/gaussian/

Matresya Matulatuwa, F., Sediyono, E., & Iriani, A. (2017). TEXT MINING DENGAN METODE LEXICON BASED UNTUK SENTIMENT ANALYSIS PELAYANAN PT. POS INDONESIA MELALUI MEDIA SOSIAL TWITTER (Vol. 2, Issue 3).

Sihab, N. (n.d.). Anies Baswedan Bicara Gagasan. Retrieved September 27, 2023, from https://www.youtube.com/watch?v=kiaKPHMABuc

Sihab, N. (n.d.). Prabowo Subianto Bicara Gagasan. Retrieved September 27, 2023, from https://www.youtube.com/watch?v= V4W5Nokc7MU

Sihab, N. (n.d.). Ganjar Pranowo Bicara Gagasan. Retrieved September 27, 2023, from https://www.youtube.com/watch?v=2YXKMHNevpo

Vira, A., & Reynata, E. (2022). PENERAPAN YOUTUBE SEBAGAI MEDIA BARU DALAM KOMUNIKASI MASSA. Komunikologi : Jurnal Ilmiah Ilmu Komunikasi, 19(2), 96–101.

Wongso, W. (2023). Indonesian RoBERTa Base Sentiment Classifier. https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier. https://huggingface.co/w11wo/indonesian-roberta-base-sentiment-classifier

Yunitasari, Y., Musdholifah, A., & Sari, A. K. (2019). Sarcasm Detection For Sentiment Analysis in Indonesian Tweets. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 13(1), 53. https://doi.org/10.22146/ijccs.41136

Zain, M. M., Simbolon, R. N., Sulung, H., & Anwar, D. Z. (2021). Jurnal Politeknik Caltex Riau Analisis Sentimen Pendapat Masyarakat Mengenai Vaksin Covid-19 Pada Media Sosial Twitter dengan Robustly Optimized BERT Pretraining Approach. Dalam Jurnal Komputer Terapan (Vol. 7, Nomor 2). https://jurnal.pcr.ac.id/index.php/jkt/

Zendrato, A.; Berutu, S.; Sumihar, Y. P.; Budiati, H. Pengembangan Model Klasifikasi Sentimen Dengan Pendekatan Vader Dan Algoritma Naive Bayes Terhadap Ulasan Aplikasi Indodax. josh 2024, 5, 755-764.

Downloads

Published

2024-08-19

How to Cite

[1]
Y. P. Sumihar, “Sentiment Analysis of Public Opinions Regarding "Ideas of Presidential Candidates" in YouTube Video Comments with Robustly Optimized BERT Pretraining Approach”, JUSIKOM PRIMA, vol. 8, no. 1, pp. 12-28, Aug. 2024.