COMPARISON OF CLASSIFICATION ALGORITHM IN CLASSIFYING AIRLINE PASSENGER SATISFACTION

Authors

  • Evta Indra Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Jacky Suwanto Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Daniel Ryan Hamonangan Sitompul a:1:{s:5:"en_US";s:89:"Prodi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia";}
  • Stiven Hamonangan Sinurat Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Andreas Situmorang Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Ruben Ruben Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia
  • Dennis Jusuf Ziegel Program Studi Sistem Informasi, Fakultas Teknologi dan Ilmu Komputer, Universitas Prima Indonesia

DOI:

https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v6i1.2848

Keywords:

Machine Learning, Random Forest, AdaBoost, XGBoost, Classification

Abstract

In order to revive the airline industry, which is being hit by the current recession, it is essential to restore passenger confidence in airlines by improving the services provided by airlines. With the influence of technology in all industrial fields, airlines can now use Machine Learning to find the essential points that can make passengers feel satisfied with airline services and classify passenger satisfaction. This study presents the making of Machine Learning models starting from Data Acquisition, Data Cleaning, Exploratory Data Analysis, Preprocessing, and Model Building. It is concluded that Random Forest is the best algorithm used in this case study, with an F1 accuracy score of 89.4, ROC-AUC score of 0.90, and a shorter modeling period than other algorithms used in this study.

Downloads

Published

2022-09-29

How to Cite

[1]
E. Indra, “COMPARISON OF CLASSIFICATION ALGORITHM IN CLASSIFYING AIRLINE PASSENGER SATISFACTION”, JUSIKOM PRIMA, vol. 6, no. 1, pp. 92-98, Sep. 2022.

Most read articles by the same author(s)

<< < 1 2 3 > >>