Comparison of Support Vector Machine (SVM) and Decision Tree Methods in Lyme Disease Data Classification

##plugins.themes.academic_pro.article.main##

Jepri Banjarnahor
Muhammad Iyan Syahfitrah Lubis
Julius Andrew
Bastian Brema Bangun

Abstract

Lyme Disease is a zoonotic infection caused by the bacterium Borrelia burgdorferi, transmitted to humans through bites from ticks of the Ixodes genus. This disease can lead to serious complications affecting the nervous system, joints, skin, and heart if not diagnosed and treated early. However, early diagnosis remains a major challenge due to the non-specific nature of its initial symptoms, which often resemble other common illnesses. In this context, artificial intelligence approaches particularly classification methods in machine learning can assist in achieving faster and more accurate diagnosis and medical decision-making. This study aims to compare the performance of two classification algorithms, Support Vector Machine (SVM) and Decision Tree, in classifying the spread level of Lyme Disease cases using historical data from the United States. The dataset includes temporal and geographic attributes spanning the years 1992 to 2011. Model performance is evaluated using accuracy, precision, recall, and F1-score. The results indicate that the Decision Tree algorithm outperforms SVM in terms of classification accuracy and interpretability. This finding suggests that Decision Tree may be more suitable for integration into clinical decision support systems for Lyme Disease diagnosis.

##plugins.themes.academic_pro.article.details##

How to Cite
Banjarnahor, J., Lubis, M. I. S., Andrew, J., & Bangun, B. B. . (2025). Comparison of Support Vector Machine (SVM) and Decision Tree Methods in Lyme Disease Data Classification. JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), 8(2), 101–112. https://doi.org/10.34012/jutikomp.v8i2.7396

References

  1. S. Akbarian, T. Cawston, L. Moreno, S. Patel, V. Allen, dan E. Dolatabadi. A Computer Vision Approach to Combat Lyme Disease. arXiv preprint, Sep. 2020. [Online]. Tersedia: http://arxiv.org/abs/2009.11931
  2. L. M. Pfeifer dan M. Valdenegro-Toro. Automatic Detection and Classification of Tick-borne Skin Lesions using Deep Learning. arXiv preprint, Nov. 2020. [Online]. Tersedia: http://arxiv.org/abs/2011.11459
  3. R. Kehoe et al. “Biomarker selection and a prospective metabolite-based machine learning diagnostic for lyme disease.” Scientific Reports, vol. 12, no. 1, Des. 2022. doi: 10.1038/s41598-022-05451-0
  4. N. Ilyinskikh, E. N. Filatova, K. V. Samoylov, A. V. Semenova, dan S. V. Axyonov. “Applying decision tree algorithms to early differential diagnosis between different clinical forms of acute Lyme borreliosis and tick-borne encephalitis.” Epidemiology and Infectious Diseases, vol. 28, no. 5, 2023. doi: 10.17816/eid601806
  5. S. Boligarla et al. “Leveraging machine learning approaches for predicting potential Lyme disease cases and incidence rates in the United States using Twitter.” BMC Medical Informatics and Decision Making, vol. 23, no. 1, 2023. doi: 10.1186/s12911-023-02315-z
  6. J. Vendrow, J. Haddock, D. Needell, dan L. Johnson. Feature Selection on Lyme Disease Patient Survey Data. arXiv preprint, Agu. 2020. [Online]. Tersedia: http://arxiv.org/abs/2009.09087
  7. S. I. Hossain et al. “Exploring convolutional neural networks with transfer learning for diagnosing Lyme disease from skin lesion images.” Computer Methods and Programs in Biomedicine, vol. 215, 2022. doi: 10.1016/j.cmpb.2022.106624
  8. B. Zhu dan M. Shoaran. Tree in Tree: from Decision Trees to Decision Graphs. arXiv preprint, Okt. 2021. [Online]. Tersedia: http://arxiv.org/abs/2110.00392
  9. K. L. Du, B. Jiang, J. Lu, J. Hua, dan M. N. S. Swamy. “Exploring Kernel Machines and Support Vector Machines: Principles, Techniques, and Future Directions.” Mathematics, vol. 12, no. 24, 2024. doi: 10.3390/math12243935
  10. S. Sahoo dan J. Maiti. A Novel Cholesky Kernel based Support Vector Classifier. (naskah belum dipublikasikan).
  11. S. Fathi Hafshejani dan Z. Moaberfard. “A new trigonometric kernel function for support vector machine.” Iran Journal of Computer Science, vol. 6, no. 2, 2023. doi: 10.1007/s42044-022-00130-9
  12. L. N. Farida dan S. Bahri. “Klasifikasi Gagal Jantung Menggunakan Metode SVM (Support Vector Machine).” Komputika: Jurnal Sistem Komputer, vol. 13, 2025. doi: 10.34010/komputika.v13i2.11330
  13. Y. N. Aini, A. Faqih, dan G. Dwilestari. Penerapan Metode Decision Tree dalam Penentuan Jurusan Siswa, 2025.
  14. M. Solehuddin, W. A. Syafei, dan R. Gernowo. “Metode Decision Tree untuk Meningkatkan Kualitas Rencana Pelaksanaan Pembelajaran dengan Algoritma C4.5.” Jurnal Penelitian dan Pengembangan Pendidikan, vol. 6, no. 3, 2022. doi: 10.23887/jppp.v6i3.52840
  15. E. Adhi Guna et al. “Implementasi Algoritma Decision Tree untuk Klasifikasi Data Evaluation Car Menggunakan Python.” Jurnal Sistem Informasi dan Ilmu Komputer, vol. 1, no. 4, 2023. doi: 10.59581/jusiik-widyakarya.v1i4
  16. Arfika. “Optimasi Support Vector Machine (SVM) Menggunakan Naive Bayes dan Decision Tree untuk Klasifikasi Tema Tugas Akhir Mahasiswa Sistem Informasi.” Computer Journal, vol. 2, no. 2, 2024. doi: 10.58477/cj.v2i2.179
  17. Ayu, P. Febriyanti, dan A. Baita. Comparison of Support Vector Machine and Decision Tree Algorithm Performance with Undersampling Approach in Predicting Heart Disease Based on Lifestyle, 2025. [Online]. Tersedia: http://jurnal.polibatam.ac.id/index.php/JAIC
  18. T. M. Permata Aulia, N. Arifin, dan R. Mayasari. “Perbandingan Kernel Support Vector Machine (SVM) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19.” SINTECH Journal, vol. 4, no. 2, 2021. doi: 10.31598/sintechjournal.v4i2.762
  19. B. K. Patterson et al. “Long COVID diagnostic with differentiation from chronic lyme disease using machine learning and cytokine hubs.” Scientific Reports, vol. 14, no. 1, 2024. doi: 10.1038/s41598-024-70929-y
  20. G. Ali, M. Anwar, M. Nauman, M. Faheem, dan J. Rashid. “Lyme rashes disease classification using deep feature fusion technique.” Skin Research and Technology, vol. 29, no. 11, 2023. doi: 10.1111/srt.13519.

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.