Application of K-Means Clustering Algorithm for Air Quality Pattern Analysis in Jakarta
##plugins.themes.academic_pro.article.main##
Abstract
Air pollution in urban areas, particularly in Jakarta, is a significant issue that impacts public health and environmental quality. This study aims to analyze air quality patterns in Jakarta from 2010 to 2023 using the K-Means Clustering method based on Air Pollution Standard Index (ISPU) data. Data processing stages based on the CRISP-DM methodology are applied to process and analyze data systematically. The stages include business understanding, data understanding, data preparation, modeling, and evaluation. The results showed that the data were divided into three distinct clusters: healthy, unhealthy, and moderate. Cluster 0, which includes stations DKI1 and DKI2, shows better air quality, while cluster 2, which consists of stations DKI3, DKI4, and DKI5, shows higher pollution levels. These findings offer valuable insights for policymakers in developing more effective air pollution control strategies. Thus, the results of this study not only contribute to the understanding of air quality in Jakarta but also emphasize the need for data-driven mitigation actions to improve public health and the environment.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Adiputra, I. N. M. (2021). Clustering Penyakit Dbd Pada Rumah Sakit Dharma Kerti Menggunakan Algoritma K-Means. INSERT: Information System and Emerging Technology Journal, 2(2), 99-105. https://doi.org/10.23887/insert.v2i2.41673
- Amalia, A., Zaidiah, A., & Isnainiyah, I. N. (2022). Prediksi Kualitas Udara Menggunakan Algoritma K-Nearest Neighbor. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 7(2), 496–507. https://doi.org/10.29100/jipi.v7i2.2843
- Anjelita, M., Windarto, A. P., Wanto, A., & Sudahri, I. (2020). Pengembangan datamining klastering pada kasus pencemaran lingkungan hidup. Semin. Nas. Teknol. Komput. Sains, 1(1), 309-313. https://prosiding.seminar-id.com/index.php/sainteks/article/view/453
- Annas, M., & Wahab, S. N. (2023). Data Mining Methods: K-Means Clustering Algorithms. International Journal of Cyber and IT Service Management, 3(1), 40–47. https://doi.org/10.34306/ijcitsm.v3i1.122
- Dhewayani, F. N., Amelia, D., Alifah, D. N., Sari, B. N., & Jajuli, M. (2022). Implementasi k-means clustering untuk pengelompokkan daerah rawan bencana kebakaran menggunakan model crisp-dm. Jurnal Teknologi dan Informasi, 12(1), 64-77. https://doi.org/10.34010/jati.v12i1.6674
- Hartanti, N. T. (2020). Metode Elbow dan K-Means Guna Mengukur Kesiapan Siswa SMK Dalam Ujian Nasional. J. Nas. Teknol. dan Sist. Inf, 6(2), 82-89. https://doi.org/10.25077/ TEKNOSI.v6i2.2020.82-89
- Hasanah, M. A., Soim, S., & Handayani, A. S. (2021). Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. Journal of Applied Informatics and Computing, 5(2), 103–108. https://doi.org/10.30871/jaic.v5i2.3200
- Kurniawan, Y. I., Anugrah, P. R., Sugihono, R. M., Abimanyu, F. A., & Afuan, L. (2023). Pengelompokan Prioritas Negara Yang Membutuhkan Bantuan Menggunakan Clustering K-Means dengan Elbow Dan Silhouette. Jurnal Pendidikan Dan Teknologi Indonesia, 3(10), 455-463. https://doi.org/10.52436/1.jpti.343
- Marisa, F., Maukar, A. L., & Akhriza, T. M. (2021). Data mining konsep dan penerapannya. Deepublish.
- Nugroho, A., Asror, I., & Wibowo, Y. F. A. (2023). Klasifikasi Tingkat Kualitas Udara DKI Jakarta Berdasarkan Open Government Data Menggunakan Algoritma Random Forest. eProceedings of Engineering, 10(2). https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/20030/0
- Pertiwi, K. D., Lestari, I. P., & Afandi, A. (2024). Analisis Risiko Kesehatan Lingkungan Pajanan Debu PM10 dan PM2. 5 pada Relawan Lalu Lintas di Jalan Diponegoro Ungaran. Pro Health Jurnal Ilmiah Kesehatan, 6(2), 85-91. https://jurnal.unw.ac.id/index.php/PJ/article/view/3351
- Prastiwi, H., Pricilia, J., & Rasywir, E. (2022). Implementasi Data Mining Untuk Menentuksn Persediaan Stok Barang Di Mini Market Menggunakan Metode K-Means Clustering. Jurnal Informatika Dan Rekayasa Komputer (JAKAKOM), 2(1), 141-148. https://ejournal.unama.ac.id/index.php/jakakom/article/view/34/58
- Salsabila P., B., Belva Cynara Trana Putri, P., Ramadhani, N., & Puspita Sari, A. (2024). Penerapan Algoritma Naive Bayes Terhadap Kualitas Udara Di Jakarta Dan Rekomendasi Aktivitas Masyarakat. JATI (Jurnal Mahasiswa Teknik Informatika), 8(6), 11732–11738. https://doi.org/10.36040/jati.v8i6.11592
- Rifqi, A., & Aldisa, R. T. (2023). Penerapan Data Mining Untuk Clustering Kualitas Udara. Jurnal Sistem Komputer Dan Informatika (JSON), 5(2), 289. https://doi.org/10.30865/json.v5i2.7145
- Sang, A. I., Sutoyo, E., & Darmawan, I. (2021). Analisis data mining untuk klasifikasi data kualitas udara dki jakarta menggunakan algoritma decision tree dan support vector machine. eProceedings of Engineering, 8(5). https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/15900
- Siregar, A. H., Sihotang, D. D., Wijaya, B. A., & Siregar, S. D. (2024). Implementasi Algoritma K-Means Menggunakan RapidMiner untuk Klasterisasi Data Obat Pada Rumah Sakit Royal Prima. Jurnal Teknologi Dan Ilmu Komputer Prima (JUTIKOMP), 7(2), 200-211. https://doi.org/10.34012/jutikomp.v7i2.5537
- Wardani N. W., Gede, P., Hartono, E., I Wayan Dharma Suryawan, Ayu Manik Dirgayusari, I Wayan Darmadi, & Mahendra, G. S. (2022). Penerapan Data Mining Untuk Klasifikasi Penjualan Barang Terlaris Menggunakan Metode Decision Tree C4.5. Jurnal Teknologi Informasi Dan Komputer, 8(3). https://doi.org/10.36002/jutik.v8i3.2081
- Wiranata, A. D., Soleman, S., Irwansyah, I., Sudaryana, I. K., & Rizal, R. (2023). Klasifikasi Data Mining Untuk Menentukan Kualitas Udara Di Provinsi Dki Jakarta Menggunakan Algoritma K-Nearest Neighbors (K-Nn). Infotech: Journal of Technology Information, 9(1), 95-100. https://doi.org/10.37365/jti.v9i1.164