Supply Chain Analysis in the Health Sector Using Gradient Boosting Regression Algorithm

##plugins.themes.academic_pro.article.main##

Bayu Angga Wijaya
Nestina Halawa

Abstract

Supply chain analysis in healthcare is a crucial aspect in ensuring efficient and optimized resource distribution. This study uses the Gradient Boosting Regression algorithm to predict demand in healthcare supply chains to improve the accuracy of stock planning and management trained using supply datasets from hospitals. The model evaluation results show that most of the predictions are close to the actual values, as seen from the points clustered around the reference line. Despite the slight deviations, the Mean Absolute Error (MAE) value of 157.16 indicates that the average prediction error is relatively small compared to the demand scale which ranges from 0 to 14,000. This indicates that the Gradient Boosting Regression model performs reasonably well in estimating supply chain demand in the healthcare sector. Thus, this approach has the potential to be used in more accurate decision-making, in order to improve the efficiency of distribution and availability of health resources

##plugins.themes.academic_pro.article.details##

Author Biography

Nestina Halawa, Univeristas Prima Indonesia

Program Studi Tekinik Informatika

Fakultas Sains dan Teknologi

References

  1. Apriska, L., Irwan, M., Suprapti, I. A. P., & Anggara, J. (2024). Pengaruh Pengeluaran Pemerintah Sektor Kesehatan, Pertumbuhan Ekonomi, Dan Kemiskinan Terhadap Indeks Pembangunan Manusia (Kabupaten/Kota Di Provinsi NTB). Jurnal Sosial Ekonomi Dan Humaniora, 10(1), 1–11. https://doi.org/10.29303/jseh.v10i1.451
  2. Arji, G., Ahmadi, H., Avazpoor, P., & Hemmat, M. (2023). Identifying resilience strategies for disruption management in the healthcare supply chain during COVID-19 by digital innovations: A systematic literature review. Informatics in Medicine Unlocked, 38(February), 101199. https://doi.org/10.1016/j.imu.2023.101199
  3. Carolina, M. (2022). Pengaruh Pengeluaran Pemerintah Di Bidang Subsidi, Pendidikan, dan Kesehatan Terhadap Kemiskinan. Jurnal Budget : Isu Dan Masalah Keuangan Negara, 7(1), 165–180. https://doi.org/10.22212/jbudget.v7i1.125
  4. Chukwu, E. (2020). A Systematic Review of Blockchain in Healthcare : Frameworks , Prototypes , and Implementations. 8.
  5. Elektronik, K. (2024). Kaysa Ramadhani Universitas Janabadra Yogyakarta, Indonesia Email: 4(2), 116–119.
  6. Fadmadika, F., Handayani, H. H., Mudzakir, T. Al, Indra, J., Komputer, F. I., Buana, U., & Karawang, P. (2024). Pengaruh smote terhadap performa algoritma random forest dan algoritma gradient boosting dalam memprediksi penyakit stroke. 7, 837–846. https://doi.org/10.37600/tekinkom.v7i2.1575
  7. Jadhav, J. S., & Deshmukh, J. (2022). A review study of the blockchain-based healthcare supply chain. Social Sciences and Humanities Open, 6(1), 100328. https://doi.org/10.1016/j.ssaho.2022.100328
  8. KANTINIT. (2023). Gradient Boosting: Pengertian, Cara Kerja dan Contoh Skripsi. https://kantinit.com/kecerdasan-buatan/gradient-boosting-pengertian-cara-kerja-dan-contoh-skripsi/
  9. Nabillah, I., & Ranggadara, I. (2020). Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut. JOINS (Journal of Information System), 5(2), 250–255. https://doi.org/10.33633/joins.v5i2.3900
  10. Rahim, A., Sutanty, M., & Anggita, P. (2021). Pengaruh Pengeluaran Pemerintah Bidang Pendidikan Dan Kesehatan Terhadap Ipm Kabupaten Sumbawa Tahun 2015-2020. Jurnal Ekonomi & Bisnis, 9(3), 276–284. https://doi.org/10.58406/jeb.v9i3.513
  11. Setyawan, N. H., & Wakhidah, N. (2025). Analisis perbandingan metode logistic regression, random forest, gradient boosting untuk prediksi diabetes. 10(1), 150–162.
  12. Spieske, A., Gebhardt, M., Kopyto, M., & Birkel, H. (2022). Improving resilience of the healthcare supply chain in a pandemic: Evidence from Europe during the COVID-19 crisis. Journal of Purchasing and Supply Management, 28(5), 100748. https://doi.org/10.1016/j.pursup.2022.100748
  13. Ummah, M. S. (2019). No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. Sustainability (Switzerland), 11(1), 1–14. http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARI
  14. Villarreal, E. R. D., Garcia-Alonso, J., Moguel, E., & Alegria, J. A. H. (2023). Blockchain for Healthcare Management Systems: A Survey on Interoperability and Security. IEEE Access, 11(December 2022), 5629–5652. https://doi.org/10.1109/ACCESS.2023.3236505