Current Trends and Future Directions of Big Data in Commerce: A Bibliometric Analysis Based on Scopus
##plugins.themes.academic_pro.article.main##
Abstract
Big data provides significant benefits across various sectors, including commerce. However, there remained a gap in bibliometric studies examining big data within the context of commerce, leaving research development in this field unclear. This study aimed to address this gap by conducting a bibliometric investigation into researchers' contributions to big data in commerce, including their affiliations and countries of origin. Additionally, the study sought to identify the most productive journals and highlight relevant and under-researched topics within this field. A bibliometric analysis approach was employed, analyzing 396 Scopus-indexed documents and using VOSviewer visualization to identify major recurring issues in the literature. The findings revealed that in 2021, the number of publications on big data in commerce peaked at 97 documents. Maalla, A., from Guangzhou College of Technology and Business, China, emerged as the most prolific author, while China led in publication output with 308 documents. The Journal of Physics Conference Series was identified as the most productive source. Computer Science was the most explored discipline, indicating a strong integration of technology with commerce. Keyword analysis divided research focus into four main clusters: analytical technology, platform optimization, supply chain management, and marketing strategy optimization. These findings provide a foundation for future research to explore areas such as Customer Experience Management, Blockchain Technology, Cloud Computing, Predictive Analytics, and Customer Segmentation, thereby enriching the academic literature and offering practical contributions to data-driven commerce.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Akter, S., & Wamba, S. F. (2016). Big data analytics in E-commerce: A systematic review and agenda for future research. Electronic Markets, 26(2), 173–194. Scopus. https://doi.org/10.1007/s12525-016-0219-0
- Alrumiah, S. S., & Hadwan, M. (2021). Implementing big data analytics in e-commerce: Vendor and customer view. IEEE Access, 9, 37281–37286. Scopus. https://doi.org/10.1109/ACCESS.2021.3063615
- Alsmadi, A. A., Shuhaiber, A., Al-Okaily, M., Al-Gasaymeh, A., & Alrawashdeh, N. (2023). Big data analytics and innovation in e-commerce: Current insights and future directions. Journal of Financial Services Marketing. Scopus. https://doi.org/10.1057/s41264-023-00235-7
- Behl, A., Dutta, P., Lessmann, S., Dwivedi, Y. K., & Kar, S. (2019). A conceptual framework for the adoption of big data analytics by e-commerce startups: A case-based approach. Information Systems and E-Business Management, 17(2–4), 285–318. Scopus. https://doi.org/10.1007/s10257-019-00452-5
- Byrapu Reddy, S. R., Kanagala, P., Ravichandran, P., Pulimamidi, D. R., Sivarambabu, P. V., & Polireddi, N. S. A. (2024). Effective fraud detection in e-commerce: Leveraging machine learning and big data analytics. Measurement: Sensors, 33. Scopus. https://doi.org/10.1016/j.measen.2024.101138
- Chen, S., & Sapna Kumari, C. (2024). Evaluation of E-commerce Supply Chain Cost Management Based on Big Data Intelligent Platform Processing. Lecture. Notes. Data Eng. Commun. Tech., 198, 253–264. Scopus. https://doi.org/10.1007/978-981-97-1983-9_23
- Dong, S. (2015). Research on the big data model of E-Commerce in cloud networking based on consumer behavior. Metallurgical and Mining Industry, 7(9), 516–521. Scopus.
- Eastin, M. S., Brinson, N. H., Doorey, A., & Wilcox, G. (2016). Living in a big data world: Predicting mobile commerce activity through privacy concerns. Computers in Human Behavior, 58, 214–220. Scopus. https://doi.org/10.1016/j.chb.2015.12.050
- Ellili, N., Nobanee, H., Alsaiari, L., Shanti, H., Hillebrand, B., Hassanain, N., & Elfout, L. (2023). The applications of big data in the insurance industry: A bibliometric and systematic review of relevant literature. Journal of Finance and Data Science, 9. Scopus. https://doi.org/10.1016/j.jfds.2023.100102
- Fang, Q., Hu, Y., Lv, S., Guo, L., Xiao, L., & Hu, Y. (2015). IIRS: A novel framework of identifying commodity entities on e-commerce big data. In Sun Y. & Li J. (Eds.), Lect. Notes Comput. Sci. (Vol. 9098, pp. 473–480). Springer Verlag; Scopus. https://doi.org/10.1007/978-3-319-21042-1_44
- Fauzi, M. A., Kamaruzzaman, Z. A., & Abdul Rahman, H. (2023). Bibliometric review on human resources management and big data analytics. International Journal of Manpower, 44(7), 1307–1327. Scopus. https://doi.org/10.1108/IJM-05-2022-0247
- Ge, F., Li, Q., & Nazir, S. (2023). The Impact of E-Commerce Live Broadcast on Happiness With Big Data Analysis. Journal of Organizational and End User Computing, 35(1). Scopus. https://doi.org/10.4018/JOEUC.333619
- Le, T. M., & Liaw, S.-Y. (2017). Effects of pros and cons of applying big data analytics to consumers’ responses in an e-commerce context. Sustainability (Switzerland), 9(5). Scopus. https://doi.org/10.3390/su9050798
- Li, L., Chi, T., Hao, T., & Yu, T. (2018). Customer demand analysis of the electronic commerce supply chain using Big Data. Annals of Operations Research, 268(1–2), 113–128. Scopus. https://doi.org/10.1007/s10479-016-2342-x
- Mahajan, K., Bordoloi, D., Barboza, C., Bansal, D., Madhava Rao, B., & Sri Varshini, S. (2024). Big Data with Cloud Computing Model for Customer Need Identification in E-Commerce Industry. In Mahato G.C., S. S., & Dash S. (Eds.), Int. Conf. Recent Trends Comput. Sci. Technol., ICRTCST - Proc. (pp. 155–159). Institute of Electrical and Electronics Engineers Inc.; Scopus. https://doi.org/10.1109/ICRTCST61793.2024.10578354
- Munshi, A., Alhindi, A., Qadah, T. M., & Alqurashi, A. (2023). An Electronic Commerce Big Data Analytics Architecture and Platform. Applied Sciences (Switzerland), 13(19). Scopus. https://doi.org/10.3390/app131910962
- Pande, L., & Sengupta, S. (2024). Digital Commerce and Big Data revolutionizing the tourism industry: A review article. IEEE Int. Conf. Converg. Technol., I2CT. 2024 IEEE 9th International Conference for Convergence in Technology, I2CT 2024. Scopus. https://doi.org/10.1109/I2CT61223.2024.10544348
- Pandey, D. K., Hunjra, A. I., Bhaskar, R., & Al-Faryan, M. A. S. (2023). Artificial intelligence, machine learning and big data in natural resources management: A comprehensive bibliometric review of literature spanning 1975–2022. Resources Policy, 86. Scopus. https://doi.org/10.1016/j.resourpol.2023.104250
- Peng, Z. L., & Huang, Y. L. (2014). Research on E-commerce intelligence based on IOT and big data. Appl. Mech. Mater., 496–500, 1889–1894. Scopus. https://doi.org/10.4028/www.scientific.net/AMM.496-500.1889
- Philippov, S. A., Zakharov, V. N., Stupnikov, S. A., & Kovalev, D. Yu. (2015). Organization of big data in the global e-Commerce platforms. In Kalinichenko L. & Starkov S. (Eds.), CEUR Workshop Proc. (Vol. 1536, pp. 119–124). CEUR-WS; Scopus. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962287417&partnerID=40&md5=89f7cb511c3626283b116fb56a59a16e
- Ramkumar, A., Kulkarni, P., Obaid, A. J., Abdulbaqi, A. S., & Al Yakin, A. (2023). Big Data Analytics and Its Application in E-Commerce. In Kristiawan M., La’biran R., Arrang J.R.T., Obaid A.J., Muthmainnah null, Apriani E., & Elngar A.A. (Eds.), AIP Conf. Proc. (Vol. 2736, Issue 1). American Institute of Physics Inc.; Scopus. https://doi.org/10.1063/5.0170687
- Ran, J., Ma, H., & Ran, R. (2024). The role of big data and IoT in logistics supply chain management of e-commerce. Journal of Computational Methods in Sciences and Engineering, 24(2), 813–822. Scopus. https://doi.org/10.3233/JCM-237067
- Roy, S., Salve, A. R., Shah, J. A., Kadam, S., Muda, I., & Dash, M. (2022). Artificial Intelligence Based Rural E-Commerce Boosting Using Big Data. Proc. Int. Conf. Contemp. Comput. Informatics, IC3I, 2087–2093. Scopus. https://doi.org/10.1109/IC3I56241.2022.10073248
- Sahoo, S. (2022). Big data analytics in manufacturing: A bibliometric analysis of research in the field of business management. International Journal of Production Research, 60(22), 6793–6821. Scopus. https://doi.org/10.1080/00207543.2021.1919333
- Samsul, S. A., Yahaya, N., & Abuhassna, H. (2023). Education big data and learning analytics: A bibliometric analysis. Humanities and Social Sciences Communications, 10(1). Scopus. https://doi.org/10.1057/s41599-023-02176-x
- Sharma, D., Maurya, S., Punhan, R., Ojha, M. K., & Ojha, P. (2023). E-Commerce: Reach Customers and Drive Sales with Data Science and Big Data Analytics. Int. Conf. Innov. Technol., INOCON. 2023 2nd International Conference for Innovation in Technology, INOCON 2023. Scopus. https://doi.org/10.1109/INOCON57975.2023.10101132
- Sun, C., Gao, R., & Xi, H. (2014). Big data based retail recommender system of non E-commerce. Int. Conf. Comput. Commun. Netw. Technol., ICCCNT. 5th International Conference on Computing Communication and Networking Technologies, ICCCNT 2014. Scopus. https://doi.org/10.1109/ICCCNT.2014.6963129
- Tamasiga, P., Ouassou, E. H., Onyeaka, H., Bakwena, M., Happonen, A., & Molala, M. (2023). Forecasting disruptions in global food value chains to tackle food insecurity: The role of AI and big data analytics – A bibliometric and scientometric analysis. Journal of Agriculture and Food Research, 14. Scopus. https://doi.org/10.1016/j.jafr.2023.100819
- Thayyib, P. V., Mamilla, R., Khan, M., Fatima, H., Asim, M., Anwar, I., Shamsudheen, M. K., & Khan, M. A. (2023). State-of-the-Art of Artificial Intelligence and Big Data Analytics Reviews in Five Different Domains: A Bibliometric Summary. Sustainability (Switzerland), 15(5). Scopus. https://doi.org/10.3390/su15054026
- Wu, P.-J., & Lin, K.-C. (2018). Unstructured big data analytics for retrieving e-commerce logistics knowledge. Telematics and Informatics, 35(1), 237–244. Scopus. https://doi.org/10.1016/j.tele.2017.11.004
- Xiong, Z. K., Wan, P. Z., & Cai, J. P. (2014). Study on e-commerce platform operation mechanism in big data environmen. In Lin Z., Hu H., Zhang Y., Qiao J., & Xu J. (Eds.), Appl. Mech. Mater. (Vols. 687–691, pp. 2776–2779). Trans Tech Publications Ltd; Scopus. https://doi.org/10.4028/www.scientific.net/AMM.687-691.2776
- Yesudas, M., Menon, G., & Ramamurthy, V. (2014). Intelligent operational dashboards for smarter commerce using big data. IBM Journal of Research and Development, 58(5–6). Scopus. https://doi.org/10.1147/JRD.2014.2346131
- Yim, S. T., Son, J. C., & Lee, J. (2022). Spread of E-commerce, prices and inflation dynamics: Evidence from online price big data in Korea. Journal of Asian Economics, 80. Scopus. https://doi.org/10.1016/j.asieco.2022.101475
- Zhang, B., Du, Z., Wang, B., & Wang, Z. (2019). Motivation and challenges for e-commerce in e-waste recycling under “Big data” context: A perspective from household willingness in China. Technological Forecasting and Social Change, 144, 436–444. Scopus. https://doi.org/10.1016/j.techfore.2018.03.001
- Zhang, D., & Huang, M. (2022). A Precision Marketing Strategy of e-Commerce Platform Based on Consumer Behavior Analysis in the Era of Big Data. Mathematical Problems in Engineering, 2022. Scopus. https://doi.org/10.1155/2022/8580561
- Zhang, X., & Chen, M. (2014). Application of big data technology in unstructured data management for the railway freight E-commerce. In Zhang J., Zhang X., Yi P., & Wang K. (Eds.), ICLEM: Syst. Plan., Supply Chain Manag., Saf. - Proc. Int. Conf. Logist. Eng. Manag. (pp. 1155–1161). American Society of Civil Engineers (ASCE); Scopus. https://doi.org/10.1061/9780784413753.175
- Zhao, Y., Li, D., & Pan, L. (2015). Cooperation or competition: An evolutionary game study between commercial banks and big data-based e-commerce financial institutions in China. Discrete Dynamics in Nature and Society, 2015. Scopus. https://doi.org/10.1155/2015/890972
- Zheng, K., Zhang, Z., & Song, B. (2020). E-commerce logistics distribution mode in big-data context: A case analysis of JD.COM. Industrial Marketing Management, 86, 154–162. Scopus. https://doi.org/10.1016/j.indmarman.2019.10.009