Analisis Pengendalian Kualitas Pengemasan Minyak Goreng Dalam Jerigen Menggunakan Metode Six Sigma Di PT. ABC

Margie Subahagia Ningsih¹, Zaharuddin²

¹Universitas Al-Azhar Medan ²Universitas Harapan Medan *Email:* margiesubahagia@gmail.com

Abstrak

Kompetisi dalam dunia yang bisnis semakin ketat membuat perusahaan harus lebih mengembangkan ideide baru agar dapat memperoleh cara yang efektif dan efisien dalam mencapai tujuan dan target perusahaan. Produsen minyak goreng selalu berusaha agar produknya sukses di pasaran dengan cara meningkatkan kualitas produknya dan meninimalisir jumlah produk cacat dalam proses produksinya, terutama dalam hal pengemasan minyak goreng dengan menggunakan jerigen. Six Sigma merupakan suatu visi peningkatan kualitas menuju target 3,4 kegagalan per sejuta kesempatan untuk setiap transaksi produk barang dan jasa. Six Sigma ini merupakan terobosan baru dalam bidang manajemen kualitas, karena Six Sigma merupakan suatu metode atau teknik pengendalian dan peningkatan kualitas yang dramatis. Penggunaan metode Six Sigma dalam penelitian ini menunjukkan bahwa kualitas yaitu 3,54 jerigen yg dihasilkan oleh perusahaan relatif baik sigma, dengan tingkat kerusakan 20.942 untuk sejuta produksi (DPMO). Dalam penelitian ini juga dapat disimpulkan bahwa ada tiga jenis produk cacat tertinggi vaitu: cacat body jerigen sebesar 57%, cacat kebocoran jerigen sebanyak 29% dan cacat ketidaksesuaian kapasitas jerigen sebesar 14%.

Kata kunci: Six Sigma, DPMO, Jenis Cacat.

PENDAHULUAN

Kebutuhan akan minyak goreng saat ini semakin meningkat, baik untuk konsumsi rumah tangga maupun tingkat industri. Sebagai perusahaan pengolahan kelapa sawit yang memproduksi minyak goreng, PT.ABC mengirim hasil produksinya dengan menggunakan kemasan jerigen, agar dapat memberikan jaminan perlindungan dan keutuhan isi produk sampai ke tangan konsumen. HACCP 22000 sangat menekankan terjaminnya food safety agar semua pelanggan dapat menggunakannya dengan aman. Cara menjamin keutuhan tersebut dengan memastikan jerigen dalam keadaan baik, tidak bocor dan kuat. Sehingga pada saat perjalanan jerigen tidak rusak dan tidak terkontaminasi oleh partikel partikel dari luar yang dapat merusak produk. Dengan alasan ini, perlu dilakukan penelitian terhadap pengendalian kualitas kemasan jerigen minyak goreng yang digunakan di PT.ABC. Menurut Gasperz (2005), perhatian terhadap kualitas memberikan dampak positif kepada bisnis melalui dua cara yaitu dampak terhadap biaya-biaya produksi dan dampak pada pendapatan. Demikian pula dengan penelitian yang pernah dilakukan oleh Safrizal (2016) mengenai pengendalian kualitas produk roti di UD Delima, menyimpulkan dengan tingkat sigma 2,13 dapat menjadi sebuah kerugian besar jika tidak ditangani, karena mungkin banyak produk yang gagal dalam setiap proses produksi yang mengakibatkan pengeluaran biaya yang tinggi.

Perlu tambahan referensi dari jurnal bereputasi dalam 5 tahun terakhir, setidak-tidaknya 12 jurnal.

Sepanjang tahun 2021, PT.ABC telah memproduksi minyak goreng dan mengemas kedalam 1.456.671 pcs jerigen. Namun terdapat produk cacat karena berbagai faktor di area pengemasan ini, dengan total produk cacat sebesar 30.511 pcs atau sekitar 25,13%, seperti disajikan pada tabel 1 berikut:

Tabel 1. Data Hasil Produksi dan Jumlah Cacat Produksi Tahun 2021

	Jumlah Jenis Cacat (pcs)			Jumlah	Produk	
Bulan	Produksi	Body	Bocor	Kapasitas	Produk Cacat	Cacat (%)
Januari	120398	1312	851	323	2486	2.06
Februari	121938	1421	838	440	2699	2.21
Maret	118342	1321	749	232	2302	1.95
April	123531	1543	726	314	2583	2.09
Mei	123764	1265	897	412	2574	2.08
Juni	120732	1696	644	230	2570	2.13
Juli	121467	1532	517	429	2478	2.04
Agustus	120643	1543	635	225	2403	1.99
September	122685	1541	746	439	2726	2.22
Oktober	123454	1444	807	337	2588	2.10
November	118975	1434	719	412	2565	2.16
Desember	120742	1366	841	330	2537	2.10
Total	1456671	17418	8970	4123	30511	25.13
Rata Rata	121389	1452	748	344	2543	2.09

Berdasarkan tabel 1 dapat dilihat produk cacat disebabkan rusak karena *body* jerigen 17.418 pcs, jerigen bocor 8.970 pcs, rusak karena kapasitas jerigen 4.123 pcs. Banyaknya cacat pada produk ini tentu saja harus segera dibuat analisis pengendalian kualitasnya, untuk mencegah terjadinya kerugian biaya yang besar. Menurut Latief dan Utami (2009), besarnya jumlah produk cacat berimplikasi pada program peningkatan kualitas dengan tujuan menghasilkan produk yang lebih baik (*better*), lebih cepat (*faster*), dengan biaya lebih rendah (*at lower cost*). Gasperz (2005) menyatakan bahwa dimensi kualitas terdiri dari : performa (*performance*), keistimewaan (*features*), keandalan (*reliability*), konformasi (*conformance*), daya tahan (*durability*), kemampuan pelayanan (*serviceability*), estetika (*esthetics*), dan kualitas yang dipersepsikan (*perceived quality*).

Perlu penambahan kontribusi penelitian ini dibandingkan penelitian yang telah ada sebelumnya.

Sistem pengendalian kualitas seperti TQM hanya menekankan pada upaya peningkatan terus menerus berdasarkan kesadaran mandiri manajemen. Sistem TQM tidak memberikan solusi yang tepat mengenai terobosan atau langkah-langkah yang seharusnya dilakukan untuk menghasilkan peningkatan kualitas secara dramatik menuju tingkat kegagalan 0 (*zero defect*). Gasperz (2007) menyatakan bahwa *Six Sigma* sebagai salah satu metode baru yang paling popular merupakan salah satu alternatif dalam prinsip-prinsip pengendalian kualitas yang merupakan terobosan dalam bidang manajemen kualitas. *Six Sigma* dijadikan ukuran kinerja sistem industri yang memungkinkan perusahaan melakukan peningkatan yang luar biasa dengan terobosan strategi yang aktual. Penelitian ini menggunakan metode *Six Sigma* untuk menganalisis pengendalian kualitas pengemasan produk minyak goreng dalam jerigen dan dapat dipandang sebagai pengendalian proses industri yang berfokus pada pelanggan dengan memperhatikan kemampuan proses.

BAHAN DAN METODE

Penelitian ini dilaksanakan di PT. ABC yang bergerak dalam pengolahan minyak kelapa sawit berlokasi di Jalan Pelabuhan Baru Lorong Sawita. Tahapan penelitian dilakukan dalam beberapa langkah sebagai berikut:

1. Identifikasi Masalah

Permasalahan yang dihadapi oleh perusahaan adalah jumlah produk cacat pada kemasan jerigen minyak goreng yang cukup tinggi, sehingga perlu diteliti bagaimanakah implementasi pengendalian kualitas jerigen di PT. ABC dan faktor faktor apa saja yang mempengaruhi terjadinya kecacatan di PT. ABC

2. Measure

Langkah pertama *measure* membuat *check sheet* untuk mengetahui area permasalahan berdasarkan frekuensi dari jenis atau penyebab produk cacat, mengambil keputusan melakukan perbaikan atau tidak. Pengukuran *measure* dibagi menjadi dua tahap.

2.1. Analisis Diagram kontrol (P-Chart).

Pengukuran dilakukan dengan *Statistical Quality* Control jenis *P-Chart* pada produk akhir dengan persamaan sebagai berikut:

$$CL = \frac{\sum np}{\sum n}$$

$$P = \frac{np}{n}$$

$$UCL = CL + \sqrt[3]{\frac{CL(1 - CL)}{n}}$$

$$UCL = CL - \sqrt[3]{\frac{CL(1 - CL)}{n}}$$

Dimana:

CL = Rata-rata (mean) produk akhir

P = Persentase kerusakan

N = Banyak priodeUCL = Batas kendali atasLCL = batas kendali bawah

2.2. Pengukuran Tingkat Six Sigma dan Defect Per Million Opportunities (DPMO).

Mengukur tingkat Six Sigma dari hasil produksi dengan persamaan sebagai berikut:

$$DPU = rac{ ext{Total Kerusakan}}{ ext{Total Produksi}}$$

$$DPMO = rac{ ext{Total Cacat Produksi}}{ ext{Jumlah Produksi}} x 1.000.000$$

Di mana:

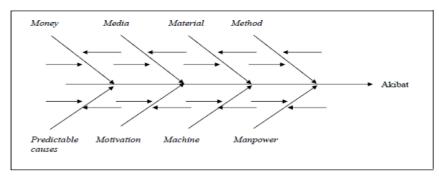
DPU = Defect Per Unit

DPMO = Defect Per Million Opportunities

3. Analyze

Merupakan tahap dimana peneliti menyimpulkan atau mendefinisikan penyebab terjadinya cacat pada produk. *Analyze* menggunakan dua tahap pengerjaan.

3.1. Diagram Pareto.


Data yang diolah untuk mengetahui persentase jenis produk di tolak menggunakan persamaan sebagai berikut:

% Kerusakan = $\frac{\text{Jumlah Kerusakan Jenis}}{\text{Jumlah kerusakan keseluruhan}} \times 100\%$

e-ISSN: 2581-057X

3.2. Diagram Sebab Akibat

Diagram sebab akibat memperlihatkan hubungan antara permasalahan yang dihadapi dengan kemungkinan penyebabnya serta faktor-faktor yang mempengaruhi. Sumber penyebab masalah kualitas yang ditemukan berdasarkan prinsip 7 M.

Gambar 1. Diagram Sebab Akibat

Faktor-faktor yang mempengaruhi dan menjadi penyebab kerusakan produk disebabkan cacat *body* jerigen, cacat bocor jerigen dan cacat kapasitas jerigen sebagai berikut:

- a. Faktor Mesin
- b. Faktor Manusia
- c. Faktor Material
- d. Faktor Lingkungan

4. Improve

Rencana tindakan untuk melaksanakan peningkatan kualitas *Six Sigma*. Setelah mengetahui penyebab kecacatan produk jerigen PT. ABC, maka disusun suatu rekomendasi atau usulan tindakan perbaikan secara umum dalam upaya menekan tingkat kerusakan produk.

5. Control

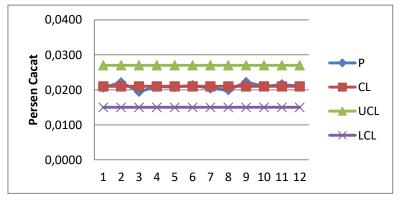
Analisis *six sigma* menekankan pada pendokumentasian dan penyebarluasan dari tindakan yang telah dilakukan:

- 1. Melakukan perawatan dan perbaikan mesin secara berkala.
- 2. Melakukan pengawasan terhadap bahan baku dan karyawan bagian produksi.
- 3. Melakukan pencatatan dan penimbangan seluruh produk catat setiap hari dari masing-masing jenis dan mesin,
- 4. Melaporkan hasil penimbangan produk cacat berdasarkan tipe produk cacat kepada *supervisor*.
- 5. Total produk cacat dalam periode satu bulan dicantumkan dalam *monthly* manager serta tampilakan di ruang produksi.

HASIL DAN PEMBAHASAN

Analisa Measure Diagram Control.

Hasil perhitungan peta kendali batas atas dan batas kendali bawah seperti disajikan pada tabel 2 berikut:


Tabel 2. Perhitungan Batas Kendali Atas dan Bawah Produk Rusak

Bulan	Jumlah Produksi	Jumlah Cacat	Percentase Cacat	CL	UCL	LCL
Januari	120398	2486	0.0206	0.021	0.027	0.015

	73
e-ISSN: 2581-05	/ X

Februari	121938	2699	0.0221	0.021	0.027	0.015
Maret	118342	2302	0.0195	0.021	0.027	0.015
April	123531	2583	0.0209	0.021	0.027	0.015
Mei	123764	2574	0.0208	0.021	0.027	0.015
Juni	120732	2570	0.0213	0.021	0.027	0.015
Juli	121467	2478	0.0204	0.021	0.027	0.015
Agustus	120643	2403	0.0199	0.021	0.027	0.015
September	122685	2726	0.0222	0.021	0.027	0.015
Oktober	123454	2588	0.0210	0.021	0.027	0.015
November	118975	2565	0.0216	0.021	0.027	0.015
Desember	120742	2537	0.0210	0.021	0.027	0.015
Total	1456671	30511				

Berdasarkan data tabel 2, peta kendali diperoleh seluruhnya berada dalam batas kendali yang telah ditetapkan. Hal ini menunjukkan pengendalian dari kerusakan cukup stabil tetapi masih sangat tinggi yaitu sekitar 2.09 %. Pengendalian kualitas di pengemasan minyak dalam jerigen di PT. ABC memerlukan perbaikan untuk menurunkan tingkat kecacatan sehingga mencapai nilai maksimal yg ditetapkan perusahaan sebesar 2%. Seperti disajikan pada gambar berikut:

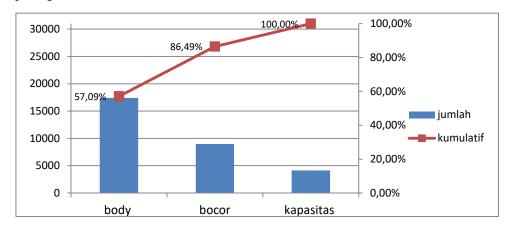
Gambar 2. Peta Kendali Produk Cacat

Analisa DPMO dan Nilai Sigma.

Pengukuran nilai Sigma dan *Defect Per Million Opportunities* (DPMO) PT. ABC disajikan tabel 3 berikut:

Tabel 3. Pengukuran Tingkat Sigma Dan *Defect Per Million Oppurtinities* (DPMO)

Bulan	Jumlah Produksi	Jumlah Cacat	DPU	DPMO	Nilai Sigma
Januari	120398	2486	0.020648	20648	3.54
Februari	121938	2699	0.022134	22134	3.51
Maret	118342	2302	0.019452	19452	3.57
April	123531	2583	0.020910	20910	3.54
Mei	123764	2574	0.020798	20798	3.54
Juni	120732	2570	0.021287	21287	3.53
Juli	121467	2478	0.020401	20401	3.54
Agustus	120643	2403	0.019918	19918	3.55
September	122685	2726	0.022220	22220	3.51


Sambungan Tabel 3. Pengukuran	Tingkat Sigma I	Dan <i>Defect Per I</i>	Million Oppurtinities
(DPMO)			

	(211.10)				
Bulan	Jumlah Produksi	Jumlah Cacat	DPU	DPMO	Nilai Sigma
Oktober	123454	2588	0.020963	20963	3.54
November	118975	2565	0.021559	21559	3.52
Desember	120742	2537	0.021012	21012	3.53
Jumlah	1456671	30511			
Rata Rata			0.020942	20942	3.54

Dari hasil perhitungan pada tabel 3, tingkat sigma rata-rata 3.54 dengan kemungkinan kerusakan rata-rata 20.942 untuk sejuta produksi. Hal ini mengindikasikan kerugian yang sangat besar jika tidak ditangani dengan baik. Karena semakin banyak produk yang gagal dalam proses produksi akan meningkatkan biaya produksi.

Analisis Diagram Pareto

Terdapat 3 penyebab terjadinya kecacatan yaitu cacat *body* jerigen, jerigen bocor, dan cacat kapasitas jerigen. Penyabab paling utama kecacatan yaitu cacat *body* jerigen dengan persentase dari total kecacatan adalah 57%. Penyebab lainnya yaitu cacat jerigen bocor sebanyak 29 % dan cacat kapasitas jerigen dengan persentase sebanyak 14%. Seperti dtampilkan pada gambar 3 berikut:

Gambar 3. Diagram Pareto Jenis Kecacatan Produksi Jerigen PT. ABC

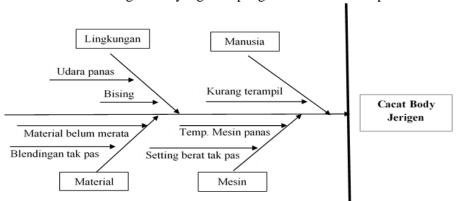
Perlu penjelasan mengapa tahapan ini perlu dilakukan karena setelah tahapan ini, ketiga jenis kecacatan tersebut tetap dibahas. Jika tahapan ini tetap ingin dimasukkan, berikan penjelasan yang lebih detail terkait gambar yang ditunjukkan.

Analisis Diagram Sebab Akibat

Diagram sebab akibat memperlihatkan hubungan antara permasalahan yang dihadapi dengan penyebabnya serta faktor-faktor yang mempengaruhi terjadinya kerusakan produk.

1. Cacat body Jerigen

Faktor dan penyebab kerusakan pada body jerigen pada proses produksi antara lain:

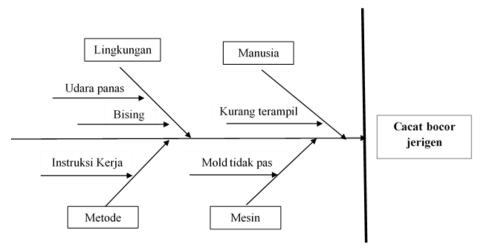

- b. Faktor Mesin
 - Setting temperatur pada mesin terlalu panas.
 - Setting berat pada mesin yang tidak pas.
 - c. Faktor Manusia
 - Kurang terampil dalam *set up* temperature dan berat pada mesin.
 - d. Faktor Material

- Komposisi campuran material jerigen yang tidak pas (bahan penguat CaCO3, plastik HDPE dan *recycle*).
- Material tidak tercampur merata.
- e. Faktor Lingkungan
 - Suhu udara yang panas menjadikan pekerja kurang nyaman.
 - Suara bising mesin.

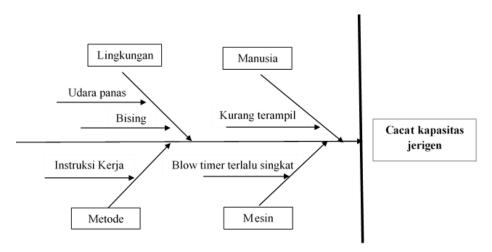
2. Cacat Bocor Jerigen

Kebocoran terjadi pada bagian mulut jerigen dan bagian tutup yang tidak tepat, sehingga minyak yang dimasukan tumpah karena adanya rongga/celah di mulut jerigen dan dapat dilihat pada gambar 4. Faktor penyebab kerusakan produk bocor jerigen diantaranya adalah:

- a. Faktor Mesin
 - Posisi mol pada mesin dalam keadaan miring dan tidak pas.
- b. Faktor Manusia
 - Operator tidak terampil mengecek dahulu posisi mol.
- c. Faktor metode
 - Instruksi kerja tidak dipahami dengan jelas.
- d. Faktor Lingkungan
 - Suhu udara panas.
 - Suara bising mesin yang mempengaruhi konsentrasi operator.



Gambar 4. Diagram Sebab Akibat Cacat Body Jerigen


3. Cacat Kapasitas Jerigen

Volume jerigen yang ditetapkan adalah 20 liter, bila kapasitas jerigen tersebut tidak cukup untuk menampung 20 liter minyak, maka produk tersebut dianggap *out of spec* karena akan merugikan konsumen dan dapat dilihat pada gambar 5. Adapun faktor-faktor penyebab kerusakan kapasitas jerigen:

- a. Faktor Mesin
 - Setting blow timer pada mesin terlalu singkat.
- b. Faktor Manusia
 - Operator mesin kurang terampil dalam menyetel blow timer.
- c. Faktor metode
 - Instruksi kerja tidak dipahami dengan jelas.
- d. Faktor Lingkungan
 - Suhu udara tinggi ysng menyebabkan panas.
 - Suara bising mesin yang menurunkan konsentrasi operator.

Gambar 5. Diagram Sebab Akibat Cacat Bocor Jerigen

Gambar 6. Diagram Sebab Akibat Cacat Kapasitas Jerigen

Faktor mesin dan manusia sangat dominan mempengaruhi cacat hasil produksi, hal ini disebabkan kesalahan setingan mesin yang dilakukan manusia, seperti disajikan tabel 4 berikut:

Tabel 4. Faktor Faktor Penyebab Kecacatan

Ionia Coast	Faktor Penyebab Cacat				
Jenis Cacat	Mesin	Mesin Manusia Metode		Lingkungan	Material
<i>Body</i> jerigen	Temperatur mesin terlalu panasSetting berat tidak pas	- Operator kurang terampil		 Udara panas Bising	Campuran tidak pasMaterial belum rata
Kebocoran Jerigen	- Mol tidak pas	- Kurang terampil	- Instruksi kerja tidak jelas	Udara panasBising	
Kapasitas Jerigen	- Blow timer terlalu singkat	- Kurang terampil	- Instruksi kerja tidak jelas	Udara panasBising	

Analisis Tahap Improve

Hasil dari tahap *Improve* ini merupakan usulan tentang perbaikan terhadap faktor-faktor yang menyebabkan terjadinya kecacatan. Usulan perbaikan ini harus diterapkan di perusahaan untuk dapat mengurangi jumlah cacat yang terjadi. Usulan-usulan tersebut harus memenuhi standar standar yang berlaku. Sehingga diharapkan proses produksi menjadi lebih baik.

Tabel 5. Usulan Tindakan Cacat Body Jerigen

Unsur	Faktor Penyebab	Standar Normal	Usulan Tindakan Perbaikan
Mesin	Setting temperature mesin terlalu panas	Temperature di setting pada suhu 165° C	Selalu mengecek temperatur mesin secara berkala untuk memastikan suhu tetap stabil
Mesin	Setting berat tidak pas	Berat jerigen harus 1010 g – 1030 g	Melakukan pengecekan terlebih dahulu pada <i>setting</i> berat mesin
Manusia	Pekerja kurang terampil	Pekerjaan harus dilakukan sesuai dengan SOP yang ditetapkan perusahaan	Mengadakan progam pelatihan bagi pekerja baik yang lama ataupun yang baru
Motorial	Komposisi campuran tidak pas	Takaran campuran sesuai yang di tetapkan oleh perusahaan	Menimbang semua material akan digunakan sesuai dengan takaran yang telah ditetapkan
Material	Campuran belum tercampur merata	Melakukan proses <i>mixing</i> selama 2 jam	Memastikan dan menghitung waktu <i>mixing</i> bahan tercampur dengan sempurna pas
	Udara panas	Sesuai dengan standar Kemenkes (21°C – 30°C).	Menambah fasilitas diruang produksi untuk mengurangi udara panas yang disebabkan oleh mesin dan cuaca dengan menambah kipas angin.
Lingkungan	Bising	Tingkat pajanan kebisingan maksimal selama 1 hari pada ruang proses produksi sebesar 85 db	Mewajibkan pekerja memakai alat pelindung telinga untuk memberikan ketenangan pekerja dalam proses produksi serta menjaga gendang telinga

Tabel 6. Usulan Tindakan Cacat Bocor Jerigen

Unsur	Faktor Penyebab	Standar Normal	Usulan Tindakan Perbaikan
	Posisi <i>mold</i> miring dan	Harusnya mold sisi kiri	Mengecek terlebih dahulu
Mesin	tidak pas		posisi <i>mold</i> sebelum mesin digunakan dalam keadaan lurus dan simetris

Manusia	Pekerja kurang terampil dan ceroboh	Pekerjaan harus dilakukan sesuai dengan SOP yang ditetapkan Perusahaan	Mengadakan progam pelatihan bagi pekerja baik yang lama ataupun yang baru sehingga dapat meningkatkan skill pekerja dan mengurangi terjadinya kesalahan
Metode	Instruksi kerja kurang jelas	Instruksi kerja diberikan oleh atasan melalui <i>briefing</i> singkat dan tertulis pada dokumen SOP	Instruksi kerja diberikan secara tertulis dengan disertai penjelasan lisan secara terperinci yaitu melaksanakan briefing secara rutin disetiap awal dan akhir kerja
Lincless	Udara panas	Sesuai dengan standar Kemenkes (21°C – 30°C).	Menambah fasilitas diruang produksi untuk mengurangi udara panas yang disebabkan oleh mesin dan cuaca dengan menambah kipas angin di setiap sudut.
Lingkungar	Bising	Tingkat pajanan kebisingan maksimal selama 1 hari pada ruang proses produksi sebesar 85 db	Mewajibkan pekerja memakai alat pelindung telinga untuk memberikan ketenangan pekerja dalam proses produksi serta menjaga gendang telinga

Tabel 7. Usulan Tindakan Cacat Kapasitas Jerigen

Unsur	Faktor Penyebab	Standar Normal	Usulan Tindakan Perbaikan
Mesin	Setting blow time yang terlalu singkat	Standar yang ditetapkan perusahaan selama 32 detik	Melakukan monitoring dan perawatan terhadap mesin dan mengatur <i>blow</i> <i>time</i> mesin sesuai dengan yang ditetapkan.
Manusia	Pekerja kurang terampil	Pekerjaan harus dilakukan sesuai dengan SOP yang ditetapkan Perusahaan	Mengadakan progam pelatihan bagi pekerja baik yang lama ataupun yang baru.
Metode	Instruksi kerja kurang jelas	Istruksi kerja diberikan oleh atasan melalui briefing singkat dan tertulis pada dokumen SOP	Instruksi kerja diberikan secara tertulis dengan disertai penjelasan lisan secara terperinci yaitu melaksanakan briefing secara rutin disetiap awal dan akhir kerja

Lingkungan	Udara panas	Sesuai dengan standar Kemenkes (21°C – 30°C).	Menambah fasilitas diruang produksi untuk mengurangi udara panas yang disebabkan oleh mesin dan cuaca dengan menambah kipas angin di setiap sudut.
	Bising	Tingkat pajanan kebisingan maksimal selama 1 hari pada ruang proses produksi sebesar 85 db	Mewajibkan pekerja memakai alat pelindung telinga untuk memberikan ketenangan pekerja dalam proses produksi serta menjaga gendang telinga

Dari usulan yang diberikan, terlihat ada beberapa usulan yang terlihat tidak terkait dengan Pengendalian Kualitas Pengemasan Minyak Goreng Dalam Jerigen seperti pada judul artikel. Sebagai contoh: apakah udara panas akan dapat menyebabkan jerigen menjadi bocor? Pada bagian usulan ini, terutama pada usulan yang Nampak tidak terkait dengan kualitas pengemasan minyak goreng agar dibahas lebih jauh.

Analisis Tahap Control

Pada tahap control dilakukan kegiatan pendokumentasian dan penyebarluasan tindakan yang telah dilakukan agar dapat megurangi kecacatan yang terjadi. Semua elemen pekerja harus terlibat dalam proses ini. Mulai dari operator, *supervisor*, *inspector QC*, hingga tingkatan atas yaitu *manager* produksi. Kontrol terhadap mesin sangat diperlukan seperti mengecek keadaan mesin sebelum digunakan, melakukan perawatan secara berkala, dan menyediakan *sparepart* mesin apabila terjadi kerusakan sehingga tidak menghambat proses produksi.

KESIMPULAN

Berdasarkan hasil penelitian dapat disimpulkan bahwa:

- 1. Jumlah produksi yang dihasilkan sebanyak 1.456.671 buah, dengan produk cacat 30.511 buah. tingkat sigma 3.54, kemungkinan rusak sebanyak 20.942 untuk sejuta produksi (*DPMO*). Hal ini tentunya menjadi sebuah kerugian yang sangat besar apabila tidak ditangani sebab semakin banyak produk yang gagal dalam proses produksi tentunya mengakibatkan pembengkakkan biaya produksi.
- 2. Jenis kerusakan produk disebabkan cacat *body* jerigen sebanyak 17.418 pcs, kebocoran jerigen sebanyak 8.970 pcs, serta jenis cacat berupa rusak karena kapasitas jerigen berjumlah 4.123 pcs.
- 3. Berdasarkan diagram *pareto*, prioritas perbaikan yang perlu dilakukan oleh perusahaan untuk mengurangi jumlah produk cacat yang terjadi dalam produksi dilakukan dengan mengurutkan persentase penyabab kecacatan tertinggi berturut-turut yaitu cacat karena *body* jerigen (57 %), kebocoran jerigen (29 %) dan kapasitas jerigen (14 %).
- 4. Perlu ditambahkan manfaat penelitian ini bagi industri maupun bagi pengambil keputusan.

DAFTAR PUSTAKA

Pustaka Jurnal:

[1] Latief, Y. & R. P. Utami. 2009. Penerapan Pendekatan Metode *Six Sigma* Dalam Penjagaan Kualitas Pada Proyek Konstruksi. Makara Teknologi, **2,**67-72. Universitas Indonesia, Graslund, Depok.

- [2] Susetyo, Joko 2011. Aplikasi *Six Sigma DMAIC* Dan *Kaizen* Sebagai Metode Pengendalian Dan Perbaikan Kualitas Produk. Jurnal Teknologi, **2**, 61-63. Institut sains & Teknologi AKPRIND, Yogyakarta.
- [3] Safrizal,2016, Pengendalian Kualitas dengan Metode *Six Sigma*, Jurnal Manajemen dan Keuangan, 2, 615-626.
- [4] Ahyari, 1990. Manajemen Produksi. Yogjakarta: Edisi keempat. Jilid kedua. BPFE.
- [5] Assauri, Sofjan. 1998. Manajemen Operasi Dan Produksi. Jakarta: LP FE UI.
- [6] Feigenbaum, Armand V, 2002. Kendali Mutu Terpadu. Jakarta: Edisi ketiga. Erlangga
- [7] Gasperz, Vincent. 2005. *Total Quality Management*. Jakarta: PT. Gramedia Pustaka Utama.
- [8] Gasperz, Vincent. 2007. Lean Six Sigma. Jakarta: PT. Gramedia Pustaka Utama.
- [9] Heizer, Jay and Barry Render. 2006. *Operations Management* (Manajemen Operasi). Jakarta: Salemba Empat.
- [10] Wignjosoebroto, S. 2000. Pengantar Teknik Industri. Surabaya : Penerbit Institut Teknologi SepuluhNovember.