Cardiac Abnormality Detection Using Adaptive Neuro-Fuzzy Inference System
DOI:
https://doi.org/10.34012/jutikomp.v8i1.6999Keywords:
Electrocardiogram, ANFIS, Heart Disease, Accuracy, PredictionAbstract
Heart defects are one of the leading causes of death worldwide, making early detection crucial to prevent more serious complications. Electrocardiogram signals are an important diagnostic tool that can be used to detect heart abnormalities in real-time. In this study, an Adaptive Neuro-Fuzzy Inference System artificial intelligence model is used to analyze ECG signal data and detect heart abnormalities early. The ECG signal data used was taken from 30 research subjects, then processed to reduce distracting noise. The combination of artificial neural networks and fuzzy systems aims to overcome the problem of uncertainty in ECG signal data. Thus, this method can be used as a solution that helps in the early diagnosis of heart disorders. The performance evaluation of the proposed Adaptive Neuro-Fuzzy Inference System revealed a perfect True Positive Rate of 1.0 on the Receiver Operating Characteristic (ROC) curve, demonstrating its exceptional ability to correctly identify all instances of cardiac abnormality within the dataset.
References
Abushariah, M. A. M., A. A. M. Alqudah, O. Y. Adwan, & R. M. M. Yousef. (2014). Automatic Heart Disease Diagnosis System Based on Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) Approaches. Journal of Software Engineering and Applications, 7(12), 1055–1064. https://doi.org/10.4236/JSEA.2014.712093
Baxt, W. G., F. S. Shofer, F. D. Sites, & J. E. Hollander. (2002). A neural network aid for the early diagnosis of cardiac ischemia in patients presenting to the emergency department with chest pain. Annals of Emergency Medicine, 40(6), 575–583. https://doi.org/10.1067/MEM.2002.129171
Febriani, Y. S. (2018). Peramalan data runtun waktu menggunakan metode adaptive neuro fuzzy inference system: Studi kasus jumlah premi PT Asuransi Jiwasraya Cabang Bandung Timur. Retrieved from https://ejournal.upi.edu/index.php/JEM/article/view/22134
Hariri, R., L. Hakim, & R. F. Lestari. (2020). Sistem Monitoring Detak Jantung Menggunakan Sensor AD8232. JOURNAL ZETROEM, 2(2). https://doi.org/10.36526/ZTR.V2I2.1017
Keikhosrokiani, P., A. B. Naidu A/P Anathan, S. Iryanti Fadilah, S. Manickam, & Z. Li. (2023). Heartbeat sound classification using a hybrid adaptive neuro-fuzzy inferences system (ANFIS) and artificial bee colony. Digital Health, 9. https://www.google.com/search?q=https://doi.org/10.1177/20552076221150741
Kumar, S., A. Mallik, A. Kumar, J. Del Ser, & G. Yang. (2023). Fuzz-ClustNet: Coupled fuzzy clustering and deep neural networks for Arrhythmia detection from ECG signals. Computers in Biology and Medicine, 153, 106511. https://doi.org/10.1016/J.COMPBIOMED.2022.106511
Pucer, J. F., & M. Kukar. (2018). A topological approach to delineation and arrhythmic beats detection in unprocessed long-term ECG signals. Computer Methods and Programs in Biomedicine, 164, 159–168. https://doi.org/10.1016/J.CMPB.2018.07.010
Putri, D. B. (2022). EKG 3,6 dan 12 channel apa perbedaannya - Diskusi Dokter. Retrieved from https://www.alomedika.com/komunitas/topic/ekg-channel
Rifai, D., & F. Fitriyadi. (2023). Penerapan Logika Fuzzy Sugeno dalam Keputusan Jumlah Produksi Berbasis Website. Hello World Jurnal Ilmu Komputer, 2(2), 102–109. https://doi.org/10.56211/HELLOWORLD.V2I2.297
Saputro, D. R. S., & P. Widyaningsih. (2017). Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method for the parameter estimation on geographically weighted ordinal logistic regression model (GWOLR). AIP Conference Proceedings, 1868(1), 40009. https://doi.org/10.1063/1.4995124/641492
Setyawan, T. R., T. K. Wibowo, A. Hidayatno, D. Darjat, & E. Handoyo. (2024). PERANCANGAN ALAT DETEKSI KELAINAN JANTUNG DENGAN ANALISIS HASIL EKG BERBASIS MACHINE LEARNING. Transient: Jurnal Ilmiah Teknik Elektro, 13(2), 52–57. https://doi.org/10.14710/TRANSIENT.V13I2.52-57
Ummah, I., N. Yannuansa, & I. Mufarrihah. (2021). Pengaruh Penentuan Domain, Fungsi Keanggotaan Dan Rule Dalam Membangun Sistem Fuzzy.
Wijaya, C., M. Harahap, M. Turnip, & A. Turnip. (2019). Abnormalities State Detection from P-Wave, QRS Complex, and T-Wave in Noisy ECG. IOP Conference Series: Journal of Physics: Conference Series, 1230(1), 012015. https://doi.org/10.1088/1742-6596/1230/1/012015
Yadollahpour, A., J. Nourozi, S. A. Mirbagheri, E. Simancas-Acevedo, & F. R. Trejo-Macotela. (2018). Designing and implementing an ANFIS based medical decision support system to predict chronic kidney disease progression. Frontiers in Physiology, 9, 415599. https://www.google.com/search?q=https://doi.org/10.3389/FPHYS.2018.01753
Zhang, D., & T. Chen. (2024). Scikit-ANFIS: A Scikit-Learn Compatible Python Implementation for Adaptive Neuro-Fuzzy Inference System. International Journal of Fuzzy Systems, 26(6), 2039–2057. https://www.google.com/search?q=https://doi.org/10.1007/S40815-024-01697-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ono Iyan Naibaho

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Hak Cipta atas naskah-naskah karya ilmiah di dalam Jurnal ini dipegang oleh Penulis.
- Penulis menyerahkan hak saat pertama kali mempublikasi Naskah karya ilmiahnya dan secara bersamaan Penulis memberikan izin/lisensi dengan mengacu pada Creative Commons Attribution-ShareAlike 4.0 International License kepada pihak lain untuk menyebarkan karya ilmiahnya tersebut dengan tetap mencantumkan penghargaan bagi penulis dan Jurnal Teknologi dan Ilmu Komputer Prima sebagai media Publikasi pertama atas karya tersebut.
- Hal-hal yang berkaitan dengan non-eksklusivitas pendistribusian Jurnal yang menerbitkan karya ilmiah penulis dapat diperjanjikan secara terpisah (contoh: permintaan untuk menempatkan karya yang dimaksud pada perpustakaan suatu institusi atau menerbitkannya sebagai buku) dengan Penulis sebagai salah satu pihak perjanjian dan dengan penghargaan pada Jurnal Teknologi dan Ilmu Komputer Prima sebagai media publikasi pertama atas karya dimaksud.
- Penulis dapat dan diharapkan untuk mengumumkan karyanya secara online (misalnya pada Repositori atau pada laman Organisai/Institusinya) sejak sebelum dan selama proses pengumpulan naskah, sebab upaya tersebut dapat meningkatkan pertukaran citasi lebih awal dan dengan cakupan yang lebih luas.