Cardiac Abnormality Detection Using Adaptive Neuro-Fuzzy Inference System

Authors

  • Ono Iyan Naibaho Universitas Prima Indonesia

DOI:

https://doi.org/10.34012/jutikomp.v8i1.6999

Keywords:

Electrocardiogram, ANFIS, Heart Disease, Accuracy, Prediction

Abstract

Heart defects are one of the leading causes of death worldwide, making early detection crucial to prevent more serious complications. Electrocardiogram signals are an important diagnostic tool that can be used to detect heart abnormalities in real-time. In this study, an Adaptive Neuro-Fuzzy Inference System artificial intelligence model is used to analyze ECG signal data and detect heart abnormalities early. The ECG signal data used was taken from 30 research subjects, then processed to reduce distracting noise. The combination of artificial neural networks and fuzzy systems aims to overcome the problem of uncertainty in ECG signal data. Thus, this method can be used as a solution that helps in the early diagnosis of heart disorders. The performance evaluation of the proposed Adaptive Neuro-Fuzzy Inference System revealed a perfect True Positive Rate of 1.0 on the Receiver Operating Characteristic (ROC) curve, demonstrating its exceptional ability to correctly identify all instances of cardiac abnormality within the dataset.

References

Abushariah, M. A. M., A. A. M. Alqudah, O. Y. Adwan, & R. M. M. Yousef. (2014). Automatic Heart Disease Diagnosis System Based on Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) Approaches. Journal of Software Engineering and Applications, 7(12), 1055–1064. https://doi.org/10.4236/JSEA.2014.712093

Baxt, W. G., F. S. Shofer, F. D. Sites, & J. E. Hollander. (2002). A neural network aid for the early diagnosis of cardiac ischemia in patients presenting to the emergency department with chest pain. Annals of Emergency Medicine, 40(6), 575–583. https://doi.org/10.1067/MEM.2002.129171

Febriani, Y. S. (2018). Peramalan data runtun waktu menggunakan metode adaptive neuro fuzzy inference system: Studi kasus jumlah premi PT Asuransi Jiwasraya Cabang Bandung Timur. Retrieved from https://ejournal.upi.edu/index.php/JEM/article/view/22134

Hariri, R., L. Hakim, & R. F. Lestari. (2020). Sistem Monitoring Detak Jantung Menggunakan Sensor AD8232. JOURNAL ZETROEM, 2(2). https://doi.org/10.36526/ZTR.V2I2.1017

Keikhosrokiani, P., A. B. Naidu A/P Anathan, S. Iryanti Fadilah, S. Manickam, & Z. Li. (2023). Heartbeat sound classification using a hybrid adaptive neuro-fuzzy inferences system (ANFIS) and artificial bee colony. Digital Health, 9. https://www.google.com/search?q=https://doi.org/10.1177/20552076221150741

Kumar, S., A. Mallik, A. Kumar, J. Del Ser, & G. Yang. (2023). Fuzz-ClustNet: Coupled fuzzy clustering and deep neural networks for Arrhythmia detection from ECG signals. Computers in Biology and Medicine, 153, 106511. https://doi.org/10.1016/J.COMPBIOMED.2022.106511

Pucer, J. F., & M. Kukar. (2018). A topological approach to delineation and arrhythmic beats detection in unprocessed long-term ECG signals. Computer Methods and Programs in Biomedicine, 164, 159–168. https://doi.org/10.1016/J.CMPB.2018.07.010

Putri, D. B. (2022). EKG 3,6 dan 12 channel apa perbedaannya - Diskusi Dokter. Retrieved from https://www.alomedika.com/komunitas/topic/ekg-channel

Rifai, D., & F. Fitriyadi. (2023). Penerapan Logika Fuzzy Sugeno dalam Keputusan Jumlah Produksi Berbasis Website. Hello World Jurnal Ilmu Komputer, 2(2), 102–109. https://doi.org/10.56211/HELLOWORLD.V2I2.297

Saputro, D. R. S., & P. Widyaningsih. (2017). Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method for the parameter estimation on geographically weighted ordinal logistic regression model (GWOLR). AIP Conference Proceedings, 1868(1), 40009. https://doi.org/10.1063/1.4995124/641492

Setyawan, T. R., T. K. Wibowo, A. Hidayatno, D. Darjat, & E. Handoyo. (2024). PERANCANGAN ALAT DETEKSI KELAINAN JANTUNG DENGAN ANALISIS HASIL EKG BERBASIS MACHINE LEARNING. Transient: Jurnal Ilmiah Teknik Elektro, 13(2), 52–57. https://doi.org/10.14710/TRANSIENT.V13I2.52-57

Ummah, I., N. Yannuansa, & I. Mufarrihah. (2021). Pengaruh Penentuan Domain, Fungsi Keanggotaan Dan Rule Dalam Membangun Sistem Fuzzy.

Wijaya, C., M. Harahap, M. Turnip, & A. Turnip. (2019). Abnormalities State Detection from P-Wave, QRS Complex, and T-Wave in Noisy ECG. IOP Conference Series: Journal of Physics: Conference Series, 1230(1), 012015. https://doi.org/10.1088/1742-6596/1230/1/012015

Yadollahpour, A., J. Nourozi, S. A. Mirbagheri, E. Simancas-Acevedo, & F. R. Trejo-Macotela. (2018). Designing and implementing an ANFIS based medical decision support system to predict chronic kidney disease progression. Frontiers in Physiology, 9, 415599. https://www.google.com/search?q=https://doi.org/10.3389/FPHYS.2018.01753

Zhang, D., & T. Chen. (2024). Scikit-ANFIS: A Scikit-Learn Compatible Python Implementation for Adaptive Neuro-Fuzzy Inference System. International Journal of Fuzzy Systems, 26(6), 2039–2057. https://www.google.com/search?q=https://doi.org/10.1007/S40815-024-01697-0

Downloads

Published

2025-04-30

How to Cite

Naibaho, O. I. (2025). Cardiac Abnormality Detection Using Adaptive Neuro-Fuzzy Inference System. JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), 8(1), 26-39. https://doi.org/10.34012/jutikomp.v8i1.6999