Analysis of Credit Card Usage Against Business Segmentation Using Agglomerative Hierarchical Clustering
DOI:
https://doi.org/10.34012/jutikomp.v7i2.5774Keywords:
Agglomerative Hierarchical Clustering, Credit Card, Data Clustering, Consumer Behavior AnalysisAbstract
This study analyzes credit card usage patterns and their impact on business segmentation using the Agglomerative Hierarchical Clustering (AHC) method. AHC was chosen because of its ability to group data in detail, especially for datasets with hierarchical relationships. The dataset includes balances, credit limits, monthly payments, and late history. The study aimed to identify high-risk credit card users in payments so that financial institutions can develop more effective risk management strategies. This study successfully identified customer groups with varying payment risks and offered solutions like debt consolidation and flexible payment programs. These findings contribute to the credit card industry in customer segmentation and credit risk management in the credit card industry.
References
Agapito, G., Milano, M., & Cannataro, M. (2022). Python clustering analysis protocols for gene expression data sets. MDPI, 1-22.
Akbar, M. N., Salsabila, A., Asri, A. P., & Syawir, M. (2023). Analisis clustering untuk segmentasi pengguna kartu kredit dengan menggunakan algoritma K-Means dan Principal Component Analysis. Journal of Artificial Intelligence & Data Science, 3(1), 1-9.
Alhamdani, F. D., Dianti, A. A., & Azhar, Y. (2021). Segmentasi pelanggan berdasarkan perilaku pengguna kartu kredit menggunakan metode K-Means clustering. JISKa, 70-77.
Apfel, N., & Liang, X. (2024). Agglomerative hierarchical clustering selection: Validity of instrumental variables. Applied Econometrics, 1-19.
B., K., George, D. J., Manikandan, G., & Thomas, T. (2020). Comparative study of K-Means clustering and agglomerative hierarchical clustering. International Journal of Emerging Trends in Engineering Research, 8(5), 1600-1604.
Dwididanti, S., Anggoro, D. A., & Sutanto, M. H. (2022). Analisis perbandingan algoritme bisecting K-Means dan Fuzzy C-Means pada data pengguna kartu kredit. Emitor: Jurnal Teknik Elektro, 22(2), 110-117.
Fadliana, A., & Rozi, F. (2015). Penerapan metode agglomerative hierarchical clustering untuk klasifikasi kabupaten/kota di Provinsi Jawa Timur berdasarkan kualitas pelayanan keluarga berencana. 35-40.
Kusumawardani, Y., Hamzah, A., & Suraya. (2018). Perbandingan metode clustering menggunakan hierarchical clustering dan partitional clustering untuk mengelompokkan dokumen berita. Jurnal Script, 5(2), 23-36.
Munirsyah, M. A., Bijaksana, & Astuti, W. (2020). Developing synonym sets for English WordNet using the commutative agglomerative clustering method. Jurnal Sisfokom (Sistem Informasi dan Komputer), 9(2), 171-176.
Roux, M. (n.d.). Comparative study of divisive hierarchical clustering algorithms.
Simanjuntak, K. P., & Khaira, U. (2021). Pengelompokkan titik api di Provinsi Jambi dengan algoritma hierarchical clustering. Malcom: Indonesian Journal of Machine Learning and Computer Science, 1, 7-16.
Siswanto, & Syahrir, N. H. (2022). Agglomerative hierarchical clustering analysis in predicting antibacterial activity of compounds based on chemical structure similarity. Jurnal Ilmu Matematika dan Terapan, 16(4), 1441-1452.
Syahara, U., Kurniawati, E., Suhana, M. P., Anggraini, R., & Yandri, F. (2024). Penerapan metode agglomerative hierarchical clustering untuk klasifikasi habitat bentik di Desa Pengudang Kabupaten Bintan. Insologi (Jurnal Sains dan Teknologi), 3(3), 306-314.
Widyawati, S., Saptomo, W. L., & Utami, Y. R. (2020). Penerapan algoritma hierarchical clustering untuk segmentasi pelanggan. JIS (Jurnal Ilmiah Sinus), 18(1), 75-87.
Yulianti, D. I., Hermanto, T. I., & Defriani, M. (2023). Analisis clustering donor darah dengan metode agglomerative hierarchical clustering. Resolusi: Rekayasa Teknik Informatika dan Informasi, 3(6), 303-308.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 shabrina prabudi, arnita -, Nugrah Anggara Siregar , Reza Nur Afdal, Raudha Izmainy Nasution
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Hak Cipta atas naskah-naskah karya ilmiah di dalam Jurnal ini dipegang oleh Penulis.
- Penulis menyerahkan hak saat pertama kali mempublikasi Naskah karya ilmiahnya dan secara bersamaan Penulis memberikan izin/lisensi dengan mengacu pada Creative Commons Attribution-ShareAlike 4.0 International License kepada pihak lain untuk menyebarkan karya ilmiahnya tersebut dengan tetap mencantumkan penghargaan bagi penulis dan Jurnal Teknologi dan Ilmu Komputer Prima sebagai media Publikasi pertama atas karya tersebut.
- Hal-hal yang berkaitan dengan non-eksklusivitas pendistribusian Jurnal yang menerbitkan karya ilmiah penulis dapat diperjanjikan secara terpisah (contoh: permintaan untuk menempatkan karya yang dimaksud pada perpustakaan suatu institusi atau menerbitkannya sebagai buku) dengan Penulis sebagai salah satu pihak perjanjian dan dengan penghargaan pada Jurnal Teknologi dan Ilmu Komputer Prima sebagai media publikasi pertama atas karya dimaksud.
- Penulis dapat dan diharapkan untuk mengumumkan karyanya secara online (misalnya pada Repositori atau pada laman Organisai/Institusinya) sejak sebelum dan selama proses pengumpulan naskah, sebab upaya tersebut dapat meningkatkan pertukaran citasi lebih awal dan dengan cakupan yang lebih luas.