Analisis Sentimen Kepuasan Pengguna Media Sosial Dengan Menggunakan Data Mining Dan Matlab

Authors

  • Naomi Cristin Br Silalahi Universitas prima Indonesia
  • Elvis Sastra Ompusunggu Universitas Prima Indonesia

DOI:

https://doi.org/10.34012/jutikomp.v7i2.5713

Keywords:

Sentiment Analysis, Data Mining, Matlab, Social Media, User satisfaction

Abstract

In today's digital era, social media has become an integral part of many people's daily lives, with platforms such as Twitter, Facebook, Instagram, and TikTok being used to share opinions, experiences, and satisfaction or dissatisfaction with various products and services. This research aims to analyze social media user satisfaction sentiment using data mining techniques and Matlab. With data collected from several social media platforms, this research identifies and categorizes user sentiment as positive, negative, or neutral. The methods used include data collection, pre-processing, feature extraction, model building, and model evaluation. The results show that data mining techniques and Matlab effectively classify user sentiment, providing valuable insights for companies to improve their quality and performance based on social media user feedback.

References

Sujadi, H., Fajar, S., & Roni, C. (2022). Analisis sentimen pengguna media sosial Twitter terhadap wabah COVID-19 dengan metode Naïve Bayes Classifier dan Support Vector Machine. INFOTECH Journal, 8(1), 22–27. https://doi.org/10.31949/infotech.v8i1.1883 [1]

Kurniawan, T. (2017). Implementasi text mining pada analisis sentimen pengguna Twitter terhadap media mainstream menggunakan Naïve Bayes Classifier dan Support Vector Machine. Tugas Akhir, Institut Teknologi Sepuluh Nopember Surabaya. https://repository.its.ac.id/48557/1/1313100075-Undergraduate_Theses.pdf [2]

Cahyani, R., Rozas, I. S., & Yalina, N. (2019). Analisis sentimen pada media sosial Twitter terhadap tokoh publik peserta Pilpres 2019. Jurnal Sains dan Seni ITS, 4(2). https://ejournal.uinmalang.ac.id/index.php/saintek/article/view/8356 [5]

Larose, D. T. (2005). Data mining: Concepts and techniques. Morgan Kaufmann Publishers. https://library.villanova.edu/Find/Record/1425086/Cite [4]

Athira, W., Cholissodin, I., & Perdana, R. S. (2018). Analisis sentimen cyberbullying pada komentar Instagram dengan metode klasifikasi Support Vector Machine. Proceeding SNASIKOM.https://proceeding.unived.ac.id/index.php/snasikom/article/download/58/52/103 [3]

Hidayat, R., & Utami, D. (2020). Analisis sentimen pengguna Twitter terhadap produk smartphone menggunakan metode Naïve Bayes. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(3), 345-352.

Rahmawati, M., & Fithriasari, K. (2018). Klasifikasi berita Indonesia menggunakan metode Naive Bayesian Classification dan Support Vector Machine dengan confix stripping stemmer. Jurnal Sains dan Seni ITS, 4(2).

Santoso, H., & Agustin, R. (2021). Penerapan metode klasifikasi dalam analisis sentimen media sosial. Jurnal Informatika, 15(1), 45-56.

Prabowo, R., & Sandhi, N. (2020). Analisis sentimen terhadap produk menggunakan data mining. Jurnal Sistem Informasi, 16(2), 102-110.

Wibowo, A. S., & Hidayah, N. (2019). Analisis sentimen menggunakan Twitter untuk evaluasi produk. Jurnal Teknologi dan Sistem Komputer, 7(1), 23-30.

Setiawan, A., & Yulianto, A. (2021). Implementasi analisis sentimen pada media sosial menggunakan metode machine learning. Jurnal Teknologi Informasi, 13(3), 201-210.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Hearst, M. A., & Hall, S. (2007). Natural language processing. Outline of today’s lecture.

Chen, L. F., Su, C. T., & Chen, K. H. (2011). An improved particle swarm optimization for feature selection. Intelligent Data Analysis, 16(2), 167–182. https://doi.org/10.3233/IDA 2012- 0517

Copestake, A. (2007). Natural Language Processing. Outline of today’s lecture.

Crawley, M. J. (2007). The R book. John Wiley & Sons.

https://doi.org/10.1002/9780470515075

Juniawan, I. (2009). Klasifikasi dokumen teks berbahasa Indonesia menggunakan minor component analysis. Jurnal Ilmiah.

Balagatabi, Z. N., & Balagatabi, H. N. (2012). Comparison of decision tree and SVM methods in classification of researcher’s cognitive styles in academic environment. Proceedings of the International Conference on Data Mining.

Borcard, D., Gillet, F., & Legendre, P. (2011). Unconstrained ordination. In Numerical Ecology with R. https://doi.org/10.1007/978-1-4419-7976-6_5

Sari, N. P., & Rachmawati, D. (2022). Sentiment analysis of social media comments using machine learning techniques. International Journal of Computer Applications, 182(5), 22-30.

Downloads

Published

2024-10-30

How to Cite

Silalahi, N. C. B. ., & Ompusunggu, E. S. . (2024). Analisis Sentimen Kepuasan Pengguna Media Sosial Dengan Menggunakan Data Mining Dan Matlab. JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), 7(2), 212-223. https://doi.org/10.34012/jutikomp.v7i2.5713