ANALISIS KOMPARASI ALGORITMA C4.5, NAIVE BAYES DAN K-NEAREST NEIGHBOR UNTUK MEMPREDIKSI KETEPATAN WAKTU LULUS MAHASISWA

Authors

  • Shakira Azzahra Hadi Putri Universitas Teknologi Sumbawa
  • Ekastini Universitas Teknologi Sumbawa
  • Juniardi Akhir Putra Universitas Teknologi Sumbawa

DOI:

https://doi.org/10.34012/jutikomp.v7i2.5575

Keywords:

Data Mining, C4.5, Naive Bayes, K-Nearest Neighbour, RapidMiner

Abstract

The problem of student graduation in higher education is one of the most essential things in showing the quality of learning in higher education, especially on the Sumbawa University of Technology (UTS) campus. The purpose of this research is to compare three algorithm methods, namely C4.5, Naive Bayes, and K-Nearest Neighbor (KNN), which is better at predicting the timeliness of student graduation using RapidMiner tools with the Knowledge Discovery in Database (KDD) method. The dataset used by the three classifications is 330 Informatics student data. Based on the comparison of the three algorithms with data splitting techniques, it is found that the C4.5 algorithm produces an accuracy of 73.49% with a precision of 64.62% and a recall of 41.89%. The Naive Bayes algorithm produces an accuracy of 72.79% with a precision of 64.06% and a recall of 38.11%. Meanwhile, the K-Nearest Neighbor (KNN) algorithm produces an accuracy of 76.08% with a precision of 73.11% and a recall of 41.92%. From the comparison of the three algorithms, the most appropriate for predicting the timeliness of student graduation is the K-nearest neighbor (KNN) algorithm.

References

Amelia, M. W., Lumenta, A. S., & Jacobus, A. (2017). Prediksi Masa Studi Mahasiswa dengan Menggunakan Algoritma Naive Bayes. E-Journal Teknik Informatika, 8301-8364.

Cahyani, H., & Setyawati , R. W. (2016). Pentingnya Peningkatan Kemampuan Pemecahan Masalah melalui PBL untuk Mempersiapkan Generasi Unggul Menghadapi MEA. Seminar Nasional Matematika X Universitas Negeri Semarang 2016, 151-152.

Comparison. (2023, Agustus 16). Diambil kembali dari Wikipedia: https://en.wikipedia.org/

Gunawan, M., Zarlis, M., & Roslina. (2021). Analisis Komparasi Algoritma Naïve Bayes dan K-Nearest Neighbor Untuk Memprediksi Kelulusan Mahasiswa Tepat Waktu. Jurnal Media Informatika Budidarma, 513-523.

Harrington, P. (2012). Machine Learning in Action. Shelter Island, New York: Manning Publications Co.

Kantardzic, M. (2003). Data Mining: Cencepts, Models, Methods, adn Algorithms. Canada: A John Willey & Sons, Inc.

Karamouzis, S., & Andreas, V. (2009). Sensitivity Analysis of Neural Network Parameters for Identifying the Factors for College Student Success. Los Angeles: WIR World Congress on Computer Scince and Information Engoneering.

Putri, A., Hardiana, C. S., Elma, N., Siregar, F. T., Rahmaddeni, & Wahyuni, R. (2023). Komparasi Algoritma K-NN, Naive Bayes dan SVM untuk Prediksi Kelulusan Mahasiswa Tingkat Akhir. MALCOM: Indonesia Journal of Machine Learning and Computer Science, 20-26.

Rahmayanti, A., ili, r. u., & Suratno, S. (2022). Perbandingan Metode Algoritma C4.5 dan Naive Bayes untuk Memprediksi Kelulusan Mahasiswa. Walisongo Journal of Information Technology, 11-22.

Sugiyono. (2019). Metode Penelitian Kuantitatif Kualitatif dan R&D. Bandung: ALFABETA.

Suntoro, J. (2019). Data Mining: Algoritma dan Implemenrasi dengan Pemrograman PHP. Jakarta: PT Elex Media Komputindo.

Suwitno. (2017). Prototype for Predicting Graduation on Time at Buddhi Dharma University Using a Comparison of the C4.5 and Naïve Bayes Algorithms. JURNAL TECH-E, 29-36.

UTS. (2024). Akademik. Diambil kembali dari Universitas Teknologi Sumbawa: https://uts.ac.id/

Downloads

Published

2024-10-30

How to Cite

Putri, S. A. H. ., Ekastini, & Putra, J. A. . (2024). ANALISIS KOMPARASI ALGORITMA C4.5, NAIVE BAYES DAN K-NEAREST NEIGHBOR UNTUK MEMPREDIKSI KETEPATAN WAKTU LULUS MAHASISWA. JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), 7(2), 172-184. https://doi.org/10.34012/jutikomp.v7i2.5575