Implementasi Data Mining Untuk Mengklasifikasi Hasil Belajar Siswa/i Dengan Metode Naïve Bayes

Authors

  • Agus Riyanto Universitas Prima Indonesia
  • Elvis Sastra Ompusunggu Universitas Prima Indonesia

DOI:

https://doi.org/10.34012/jutikomp.v7i2.5237

Keywords:

Data Mining, Naïve Bayes, Classification, RapidMiner

Abstract

This study aims to classify student learning outcomes and determine the accuracy of the research methods. The research was conducted at MAS Amaliyah Sunggal in 2024. This research applies data mining using the Naïve Bayes algorithm method and testing the accuracy of the Naïve Bayes method with RapidMiner. The data used consists of secondary data obtained directly from the school and data from distributing questionnaires. The population is all third-grade high school students T.A. 2023/2024, which amounted to 151 people. The sampling technique used is simple random sampling with a sample size of 60 people, which will be used as a dataset. The attributes used amounted to 10 and 1 class attribute for classification. Data analysis is done with the Bayes theorem equation with 60 training data and 1 testing data. The analysis results show that the highest probability value is in the P (H = Very Good) class of 0.4061516, which can be concluded by the classification of learning outcomes on report cards T.A. 2023/2024, categorized as very good. Based on the results of testing the level of accuracy of the Naïve Bayes method with RapidMiner using the provisions of 70% training data and 30% testing data, it shows an accuracy value of 94.44%, which means that the Naïve Bayes method is good enough to be used to classify student learning outcomes.

References

Ahdar. (2021). Ilmu Pendidikan (Musyarif (ed.)). IAIN Parepare Nusantara Press.

Basri, H., Azis, M. S., Malau, Y., Fridayanthie, E. W., Rizal, K., & Rianto, H. (2022). Penerapan Particle Swarm Optimization Pada Algoritma Naïve Bayes Untuk Klasifikasi Hasil Belajar. Information System for Educators and Professionals : Journal of Information System, 6(2), 97. https://doi.org/10.51211/isbi.v6i2.1752

Firdaus, Y. M. (2019). Penerapan Metode Naïve Bayes Classifier Untuk Mengklasifikasi Tingkat Prestasi Akademik Santri Pondok Pesantren Mahasiswa ( PPM ) Baitul Jannah Malang. Jurnal Mahasiswa Teknik Informatika, 3(1), 327–336. https://doi.org/10.36040/jati.v3i1.1398

Firmansyah, & Yulianto, A. (2023). Prediksi Hasil Belajar Menggunakan Naïve Bayes Classifier pada Tingkat Sekolah Dasar. Remik: Riset Dan E-Jurnal Manajemen Informatika Komputer, 7(2), 1174–1182. https://doi.org/10.33395/remik.v7i2.12375

Gunawan, R., Wijoyo, S. H., & Wicaksono, S. A. (2019). Klasifikasi Hasil Belajar Peserta Didik Pada Jurusan Teknik Komputer dan Jaringan (TKJ) di SMK Negeri 3 Malang Menggunakan Algoritma Naïve Bayes. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(8), 7475–7482.

Hidayat, R., & Abdillah. (2019). Ilmu Pendidikan : Konsep, Teori dan Aplikasinya (C. Wijaya & Amiruddin (eds.)). LPPPI.

Marpaung, S., Solikhun, & Irawan. (2021). Penerapan Metode Naïve Bayes Dalam Memprediksi Prestasi Siswa Di SMA Negeri 1 Panombeian Panei. Jurnal Sistem Informasi Dan Ilmu Komputer Prima(JUSIKOM PRIMA), 4(2), 8–13. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v4i2.1522

Muslim, M. A., Prasetiyo, B., Mawarni, E. L. H., Herowati, A. J., Mirqotussa’adah, Rukmana, S. H., & Nurzahputra, A. (2019). Data Mining Algoritma C4.5 Disertai contoh kasus dan penerapannya dengan program komputer (E. Listiana & N. Cahyani (eds.)). Unnes Repository.

Mustika, Ardilla, Y., Manuhutu, A., Ahmad, N., Hasbi, I., Guntoro, Manuhutu, M. A., Ridwan, M., Hozairi, Wardhani, A. K., Alim, S., Romli, I., Religia, Y., Octafian, D. T., Sufandi, U. U., & Ernawati, I. (2021). Data Mining dan Aplikasinya. Widina Bhakti Persada Bandung.

Rahman, A. (2023). Klasifikasi Performa Akademik Siswa Menggunakan Metode Decision Tree dan Naive Bayes. Jurnal SAINTEKOM, 13(1), 22–31. https://doi.org/10.33020/saintekom.v13i1.349

Rifai, M. F., Jatnika, H., & Valentino, B. (2019). Penerapan Algoritma Naïve Bayes Pada Sistem Prediksi Tingkat Kelulusan Peserta Sertifikasi Microsoft Office Specialist (MOS). PETIR : Jurnal Pengkajian Dan Penerapan Teknik Informatika, 12(2), 131–144. https://doi.org/10.33322/petir.v12i2.471

Triwidianti, J., Alfian, F. Y., & Prasojo, M. (2021). Perbandingan Metode Data Mining Untuk Prediksi Prestasi Siswa Tingkat Pendidikan Menengah Kejuruan Pada Sekolah Menengah Kejuruan Negeri (SMKN 1) Gadingrejo Pringsewu Lampung. Seminar Nasional Hasil Penelitian Dan Pengabdian Masyarakat, 1, 126–133.

Wanto, A., Siregar, M. N. H., Windarto, A. P., Hartama, D., Ginantra, N. L. W. S. R., Napitupulu, D., Negara, E. S., Lubis, M. R., Dewi, S. V., & Prianto, C. (2020). Data Mining : Algoritma & Implementasi (T. Limbong (ed.); Issue 1). Yayasan Kita Menulis.

Downloads

Published

2024-10-09

How to Cite

Riyanto, A. ., & Elvis Sastra Ompusunggu. (2024). Implementasi Data Mining Untuk Mengklasifikasi Hasil Belajar Siswa/i Dengan Metode Naïve Bayes. JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), 7(2), 129-141. https://doi.org/10.34012/jutikomp.v7i2.5237