Analisis Pola Faktor Penyebab Balita Stunting Pada Dinas Kesehatan Kota Bekasi Menggunakan Algoritma FP-Growth

Authors

  • Nabiilah Khoirunnisaa Universitas Bhayangkara Jakarta
  • wowon Priatna Universitas Bhayangkara Jakarta
  • Rasim - Universitas Bhayangkara Jakarta
  • Joni Warta Universitas Bhayangkara Jakarta

DOI:

https://doi.org/10.34012/jutikomp.v7i1.4761

Keywords:

Association rules, FP-Growth Algorithm, Data Mining, Health, Stunting

Abstract

Stunting is a common long-term nutritional problem among children under five, especially in developing countries, including Indonesia. Recently, the term stunting has become a popular topic of discussion while diverting attention from the problems of malnutrition and obesity. This study aims to determine the results of the formation of rules or association rules in determining the causal factors that most affect stunting in toddlers at the Bekasi City Health Office. The method that will be used in this research is the FP-Growth Algorithm. With the application of the FP-Growth Algorithm, accurate results can be obtained in determining the rules for determining the causal factors that most affect stunting in toddlers. The dataset has 4575 data and will be evaluated using the lift ratio. This research produces 26 rules, the best of which are Not Getting Exclusive Breastfeeding, Thinness, and Malnutrition, with a minimum support value of 0.5, a confidence value of 0.6, and a lift ratio of 1.17. Thus, applying the FP-Growth Algorithm in this study is effective because it achieves a lift ratio value of more than 1.

References

Afdal, M., Prana Disastra, R., Studi Sistem Informasi, P., Sains dan Teknologi UIN Suska Riau Jl Soebrantas KM, F. H., & Pekanbaru -Riau, P. (2022). ANALISIS POLA KECELAKAAN LALU LINTAS MENGGUNAKAN ALGORITMA K-MEANS DAN FP-GROWTH STUDI KASUS: POLRES SOLOK. Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, 8(1), 31–40.

Amelia, R., & Utomo, D. P. (2019). ANALISA POLA PEMESANAN PRODUK MODERN TRADE INDEPENDENT DENGAN MENEREPAKAN ALGORITMA FP. GROWTH (STUDI KASUS: PT. ADAM DANI LESTARI). KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1). https://doi.org/10.30865/komik.v3i1.1622

Antonie, M. L., & Zaine, O. R. (n.d.). Mining Positive and Negative Association Rules: An Approach for Confined Rules.

Ardianto, A., & Fitrianah, D. (2019). Penerapan Algoritma FP-Growth Rekomendasi Trend Penjualan ATK Pada CV. Fajar Sukses Abadi. Jurnal Telekomunikasi Dan Komputer, 9(1), 49. https://doi.org/10.22441/incomtech.v9i1.3263

Dharshinni, N. P., Bangun, E., Karunia, S., Damayanti, R., Rophe, G., & Pandapotan, R. (2020). Menu Package Recommendation using Combination of K-Means and FP-Growth Algorithms at Bakery Stores. In Jurnal Mantik (Vol. 4, Issue 2).

Fitria, R., Nengsih, W., & Qudsi, D. H. (2017). Implementasi Algoritma FP-Growth Dalam Penentuan Pola Hubungan Kecelakaan Lalu Lintas. Jurnal Sistem Informasi, 13(2), 118. https://doi.org/10.21609/jsi.v13i2.551

Gunadi, G., & Indra Sensuse, D. (2012). PENERAPAN METODE DATA MINING MARKET BASKET ANALYSIS TERHADAP DATA PENJUALAN PRODUK BUKU DENGAN MENGGUNAKAN ALGORITMA APRIORI DAN FREQUENT PATTERN GROWTH (FP-GROWTH) : STUDI KASUS PERCETAKAN PT. GRAMEDIA. Jurnal TELEMATIKA MKOM, 4(1).

IBM SPSS Modeler CRISP-DM Guide Product Information. (n.d.).

Mugianti, S., Mulyadi, A., Anam, A. K., & Najah, Z. L. (2018). Faktor Penyebab Anak Stunting Usia 25-60 Bulan di Kecamatan Sukorejo Kota Blitar. Jurnal Ners Dan Kebidanan (Journal of Ners and Midwifery), 5(3), 268–278. https://doi.org/10.26699/jnk.v5i3.art.p268-278

Muhammad Rizky Alditra Utama, K., Umar, R., Yudhana, A., Dahlan Yogyakarta, A., Studi Teknik Elektro, P., & Ahmad Dahlan Yogyakarta, U. (2020). PENERAPAN ALGORITMA FP-GROWTH UNTUK PENENTUAN POLA PEMBELIAN TRANSAKSI PENJUALAN PADA TOKO KGS RIZKY MOTOR. Jurnal DINAMIK, 25(1), 20–28.

Nurasiah. (2021). Implementasi Algoritma FP-Growth Pada Pengenalan Pola Penjualan. Terapan Informatika Nusantara, 1(9), 438–444.

Perpres Nomor 72 Tahun 2021 Tentang Percepatan Penurunan Stunting. (n.d.).

Rokom. (2023). Prevalensi Stunting di Indonesia Turun ke 21,6% dari 24,4%.

Siswati, T. (2018). STUNTING (K. HarI & T. Sudargo (Eds.); 1st ed., Vol. 1). Husada Mandiri.

Tahir, M., & Sitompul, N. (2021). PENERAPAN ALGORITMA FP-GROWTH DALAM MENENTUKAN KECENDERUNGAN MAHASISWA MENGAMBIL MATA KULIAH PILIHAN. Jurnal Ilmiah NERO, 6(1).

Yudiana, Y., Yulia Agustina, A., & Nur Khofifah, dan. (2023). Prediksi Customer Churn Menggunakan Metode CRISP-DM Pada Industri Telekomunikasi Sebagai Implementasi Mempertahankan Pelanggan. Indonesian Journal of Islamic Economics and Business, 8(1), 01–20.

http://e-journal.lp2m.uinjambi.ac.id/ojp/index.php/ijoieb

Downloads

Published

2024-04-30

How to Cite

Khoirunnisaa, N. ., Priatna, wowon, -, R., & Warta, J. . (2024). Analisis Pola Faktor Penyebab Balita Stunting Pada Dinas Kesehatan Kota Bekasi Menggunakan Algoritma FP-Growth. JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), 7(1), 73-87. https://doi.org/10.34012/jutikomp.v7i1.4761