Penerapan Algoritma Convolutional Neural Network Untuk Menentukan Retinopati Hipertensi Melalui Citra Retina Fundus
DOI:
https://doi.org/10.34012/jutikomp.v6i2.4307Keywords:
Convolutional Neural Network, Eye Fundus Images, Hypertensive RetinopathyAbstract
Hypertension is a disease that spreads in the human body caused by increased blood pressure that exceeds normal limits. The increase occurs over a long period, causing complications in human organs that cannot be seen clearly, such as complications in the heart, kidneys, brain, and retina. One of the disorders or complications of high blood pressure is in the retina. The disorder in the retina can also be said as hypertensive retinopathy. Patients suffering from hypertensive retinopathy can only be diagnosed by an ophthalmologist; this is because hypertensive retinopathy cannot be seen with the naked eye. However, one of the earliest signs is the thinning of the arterioles, which can cause blindness. Therefore, computer-assisted processing and analysis of eye fundus images to identify hypertensive retinopathy is an important thing to do by applying the Convolutional Neural Network algorithm. There are nine Convolutional Neural Network architectures used, namely AlexNet, DenseNet, Inception-V3, InceptionResNetV2, Lenet-5, MobileNetV2, ResNet50, VGG16, and VGG19. Based on the experimental results, it was found that of the nine Convolutional Neural Network architectures, two of them, namely AlexNet and Lenet-5, obtained an F1 Measure value of 0.66 and the highest accuracy of 0.67.
References
R. Amin, P. Purwanita, R. Erna, P. M. Sari, E. Rahmadini, and V. Hestika, “Skrining retinopati hipertensi di layanan kesehatan primer di Palembang,” Jurnal Pengabdian Masyarakat: Humanity and Medicine, vol. 1, no. 3, pp. 117–124, 2020, doi: 10.32539/hummed.v1i3.37.
A. Hanna and K. Sayuti, “Artikel Penelitian Gambaran Karakteristik Penderita Retinopati Hipertensi Yang,” vol. 7, no. 2, pp. 258–266, 2018.
B. Karadag, T. Ozyigit, Z. Serindag, A. Ilhan, and B. Ozben, “Blood pressure profile is associated with microalbuminuria and retinopathy in hypertensive nondiabetic patients,” Wien Klin Wochenschr, vol. 130, no. 5–6, pp. 204–210, 2018, doi: 10.1007/s00508-017-1270-3.
Q. Abbas and M. E. A. Ibrahim, “DenseHyper: an automatic recognition system for detection of hypertensive retinopathy using dense features transform and deep-residual learning,” Multimed Tools Appl, vol. 79, no. 41–42, pp. 31595–31623, 2020, doi: 10.1007/s11042-020-09630-x.
M. R. Faheem and Mui-zzud-Din, “Diagnosing Hypertensive Retinopathy through Retinal Images,” Biomedical Research and Therapy, vol. 2, no. 10, pp. 385–388, 2015, doi: 10.7603/s40730-015-0025-x.
R. Rodiah et al., Pengolahan Citra Fundus Diabetik Retinopati edisi 2 Penerbit, no. January. 2019.
M. Y. Kipti, Wiharto, and E. Suryani, “Deteksi Awal Penyakit Retinopati Hipertensi dengan Pendekatan Analisis Fraktal Citra Fundus Retina,” Academia, 2015.
A. Chopra, A. Sharma, S. Singh, and V. Bahl, “Changing Perspectives in Classifications of Hypertensive Retinopathy,” 2014. [Online]. Available: www.iosrjournals.org
Bintoro Siswo Nugroho, Yayuk Susilowati, and Nurhasanah, “Aplikasi Metode Analisis Fraktal dan K-Means Clustering untuk Identifikasi Retinopati Diabetik dan Retinopati Hipertensi menggunakan Citra Fundus Mata,” JEPIN (Jurnal Edukasi dan Penelitian Informatika) , vol. 8, no. 1, pp. 128–133, 2022.
D. Argüeso et al., “Few-Shot Learning Approach for Plant Disease Classification using Images Taken in the Field,” Comput Electron Agric, vol. 175, no. January, 2020, doi: 10.1016/j.compag.2020.105542.
S. S. A.-N. Belal A.M. Ashqar, Bassem S. Abu-Nasser, “Plant Seedlings Classification Using Deep Learning,” International Journal of Academic Information Systems Research (IJAISR), vol. 46, no. 3, pp. 745–749, 2019.
J. W. Tan, S. W. Chang, S. Abdul-Kareem, H. J. Yap, and K. T. Yong, “Deep Learning for Plant Species Classification Using Leaf Vein Morphometric,” IEEE/ACM Trans Comput Biol Bioinform, vol. 17, no. 1, pp. 82–90, 2020, doi: 10.1109/TCBB.2018.2848653.
D. Juniati and A. E. Suwanda, “Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Retina Menggunakan Dimensi Fraktal Box Counting Dan Fuzzy K-Means,” Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika, vol. 5, no. 1, pp. 10–18, 2022, doi: 10.30605/proximal.v5i1.1623.
M. M. Sebatubun, “Peningkatan Kualitas Citra X-Ray Paru - paru Menggunakan Contrast Limited Adaptive Histogram Equalization dan Gaussian Filter,” in Seminar Riset Teknologi Informasi (SRITI), 2016, pp. 241–247.
A. I. Zakaria, E. Ernawati, A. Vatresia, and W. K. Oktoeberza, “Perbandingan Metode High-Frequency Emphasis (HFE) Dan Contrast Limited Adaptive Histogram Equalization (CLAHE) Dalam Perbaikan Kualitas Citra Penginderaan Jauh (Remote Sensing),” Jurnal Pseudocode, vol. 6, no. 2, pp. 125–137, 2019, doi: 10.33369/pseudocode.6.2.125-137.
S. Kana Saputra, I. Taufik, M. Hidayat, and D. F. Dharma, “Pneumonia identification based on lung texture analysis using modified k-nearest neighbour,” J Phys Conf Ser, vol. 2193, no. 1, 2022, doi: 10.1088/1742-6596/2193/1/012070.
V. R. Allugunti, “Breast cancer detection based on thermographic images using machine learning and deep learning algorithms,” International Journal of Engineering in Computer Science, vol. 4, no. 1, pp. 49–56, 2022.
I. M. Erwin, R. Risnandar, E. Prakarsa, and B. Sugiarto, “Kayu7net: Identifikasi dan Evaluasi F-Measure Citra Kayu berbasis Deep Convolutional Neural Network (DCNN),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 6, p. 1089, 2020, doi: 10.25126/jtiik.2020712663.
B. Yanto, L. Fimawahib, A. Supriyanto, B. H. Hayadi, and R. R. Pratama, “Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network,” INOVTEK Polbeng - Seri Informatika, vol. 6, no. 2, p. 259, 2021, doi: 10.35314/isi.v6i2.2104.
M. Altun, H. Gürüler, O. Özkaraca, F. Khan, J. Khan, and Y. Lee, “Monkeypox Detection Using CNN with Transfer Learning,” Sensors, vol. 23, no. 4, 2023, doi: 10.3390/s23041783.
J. Xu, Y. Zhang, and D. Miao, “Three-way confusion matrix for classification: A measure driven view,” Inf Sci (N Y), vol. 507, pp. 772–794, 2020, doi: 10.1016/j.ins.2019.06.064.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Kana Saputra S, Insan Taufik, Debi Yandra Niska, Raiyan Fairozi, Mhd Hidayat, Mohammed Hafizh Al-Areef
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Hak Cipta atas naskah-naskah karya ilmiah di dalam Jurnal ini dipegang oleh Penulis.
- Penulis menyerahkan hak saat pertama kali mempublikasi Naskah karya ilmiahnya dan secara bersamaan Penulis memberikan izin/lisensi dengan mengacu pada Creative Commons Attribution-ShareAlike 4.0 International License kepada pihak lain untuk menyebarkan karya ilmiahnya tersebut dengan tetap mencantumkan penghargaan bagi penulis dan Jurnal Teknologi dan Ilmu Komputer Prima sebagai media Publikasi pertama atas karya tersebut.
- Hal-hal yang berkaitan dengan non-eksklusivitas pendistribusian Jurnal yang menerbitkan karya ilmiah penulis dapat diperjanjikan secara terpisah (contoh: permintaan untuk menempatkan karya yang dimaksud pada perpustakaan suatu institusi atau menerbitkannya sebagai buku) dengan Penulis sebagai salah satu pihak perjanjian dan dengan penghargaan pada Jurnal Teknologi dan Ilmu Komputer Prima sebagai media publikasi pertama atas karya dimaksud.
- Penulis dapat dan diharapkan untuk mengumumkan karyanya secara online (misalnya pada Repositori atau pada laman Organisai/Institusinya) sejak sebelum dan selama proses pengumpulan naskah, sebab upaya tersebut dapat meningkatkan pertukaran citasi lebih awal dan dengan cakupan yang lebih luas.