Analisis Perilaku Pelanggan menggunakan Metode Ensemble Logistic Regression

Authors

  • jeffry - Universitas Pancasakti Makassar
  • Syahrul Usman Universitas Pancasakti Makassar
  • Firman Aziz Universitas Pancasakti Makassar

DOI:

https://doi.org/10.34012/jutikomp.v6i2.4258

Keywords:

Ensemble, Logistic Regression, Bagging, Boosting, Customer Behavior

Abstract

Customer behavior analysis is crucial for companies, especially Small and Medium Enterprises (SMEs), to make strategic decisions. Through customer behavior analysis, patterns of customer behavior in purchasing a product or service can be identified. This provides insights into preferences and the right strategies to maintain or increase customer loyalty. This research aims to analyze customer behavior using the ensemble logistic regression method. Data was collected from the company's customer database over the last 5 years. Customer behavior is characterized by gender, age, and the preferred vehicle transmission type. The ensemble logistic regression method was implemented to improve model accuracy. The results show that the ensemble technique can enhance the accuracy of the Logistic Regression method. Model accuracy significantly increased with boosting, achieving an accuracy of 76%, while the model with bagging achieved an accuracy of 75%.

References

V. Kavitha, G. H. Kumar, S. M. Kumar, and M. Harish, “Churn prediction of customer in telecom industry using machine learning algorithms,” Int. J. Eng. Res. Technol. IJERT, vol. 9, no. 5, pp. 181–184, 2020.

G. R. Raajini S. P. Preethi, R. Shanmuga Priya, L. Rajesh, X. Mercilin, “Customer Behavior Prediction for E-Commerce Sites Using Machine Learning Techniques: An Investigation,” in Reinventing Manufacturing and Business Processes Through Artificial Intelligence, CRC Press, 2021.

A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan Machine Learning dalam Berbagai Bidang,” J. Khatulistiwa Inform., vol. 5, no. 1, p. 490845, 2020.

A. M. Choudhury and K. Nur, “A machine learning approach to identify potential customer based on purchase behavior,” in 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), IEEE, 2019, pp. 242–247.

D. Suryadi and H. M. Kim, “A data-driven approach to product usage context identification from online customer reviews,” J. Mech. Des., vol. 141, no. 12, p. 121104, 2019.

M. Al-Mashraie, S. H. Chung, and H. W. Jeon, “Customer switching behavior analysis in the telecommunication industry via push-pull-mooring framework: A machine learning approach,” Comput. Ind. Eng., vol. 144, p. 106476, 2020.

K. K. Mohbey, “Employee’s attrition prediction using machine learning approaches,” in Machine Learning and Deep Learning in Real-Time Applications, IGI Global, 2020, pp. 121–128.

M. Bahrami, B. Bozkaya, and S. Balcisoy, “Using behavioral analytics to predict customer invoice payment,” Big Data, vol. 8, no. 1, pp. 25–37, 2020.

Q. Wu et al., “Speaking with actions-learning customer journey behavior,” in 2019 IEEE 13th International conference on semantic computing (ICSC), IEEE, 2019, pp. 279–286.

S.-H. Mun, Y. Kwak, and J.-H. Huh, “A case-centered behavior analysis and operation prediction of AC use in residential buildings,” Energy Build., vol. 188, pp. 137–148, 2019.

E. Bisong, “Logistic Regression,” in Building Machine Learning and Deep Learning Models on Google Cloud Platform, Berkeley, CA: Apress, 2019, pp. 243–250. doi: 10.1007/978-1-4842-4470-8_20.

S. Sreejesh, S. Mohapatra, and M. R. Anusree, “Binary Logistic Regression,” in Business Research Methods: An Applied Orientation, S. Sreejesh, S. Mohapatra, and M. R. Anusree, Eds., Cham: Springer International Publishing, 2014, pp. 245–258. doi: 10.1007/978-3-319-00539-3_11.

L. B. C. Tanujaya, B. Susanto, and A. Saragih, “The Comparison of Logistic Regression Methods and Random Forest for Spotify Audio Mode Featurre Classification,” Indones. J. Data Sci., vol. 1, no. 3, Art. no. 3, Dec. 2020, doi: 10.33096/ijodas.v1i3.16.

A. Shahraki, M. Abbasi, and Ø. Haugen, “Boosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost,” Eng. Appl. Artif. Intell., vol. 94, p. 103770, Sep. 2020, doi: 10.1016/j.engappai.2020.103770.

P. Bahad and P. Saxena, “Study of AdaBoost and Gradient Boosting Algorithms for Predictive Analytics,” in International Conference on Intelligent Computing and Smart Communication 2019, G. Singh Tomar, N. S. Chaudhari, J. L. V. Barbosa, and M. K. Aghwariya, Eds., in Algorithms for Intelligent Systems. Singapore: Springer, 2020, pp. 235–244. doi: 10.1007/978-981-15-0633-8_22.

H. Jafarzadeh, M. Mahdianpari, E. Gill, F. Mohammadimanesh, and S. Homayouni, “Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation,” Remote Sens., vol. 13, no. 21, Art. no. 21, Jan. 2021, doi: 10.3390/rs13214405.

E. Yaman and A. Subasi, “Comparison of Bagging and Boosting Ensemble Machine Learning Methods for Automated EMG Signal Classification,” BioMed Res. Int., vol. 2019, p. e9152506, Oct. 2019, doi: 10.1155/2019/9152506.

S. García, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining, vol. 72. in Intelligent Systems Reference Library, vol. 72. Cham: Springer International Publishing, 2015. doi: 10.1007/978-3-319-10247-4.

R. Yacouby and D. Axman, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models,” in Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, Online: Association for Computational Linguistics, Nov. 2020, pp. 79–91. doi: 10.18653/v1/2020.eval4nlp-1.9.

T. Saito and M. Rehmsmeier, “The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets,” PLOS ONE, vol. 10, no. 3, p. e0118432, Mar. 2015, doi: 10.1371/journal.pone.0118432.

J. Miao and W. Zhu, “Precision-Recall Curve (PRC) Classification Trees,” Evol. Intell., vol. 15, no. 3, pp. 1545–1569, Sep. 2022, doi: 10.1007/s12065-021-00565-2.

S. Macskassy and F. Provost, “Confidence Bands for Roc Curves.” Rochester, NY, 2004. Accessed: Aug. 23, 2023. [Online]. Available: https://papers.ssrn.com/abstract=1281313

A. R. Rachakonda and A. Bhatnagar, “ARatio: Extending area under the ROC curve for probabilistic labels,” Pattern Recognit. Lett., vol. 150, pp. 265–271, Oct. 2021, doi: 10.1016/j.patrec.2021.06.023.

S. Narkhede, “Understanding auc-roc curve,” Data Sci., vol. 26, no. 1, pp. 220–227, 2018.

D. Borkin, A. Némethová, G. Michaľčonok, and K. Maiorov, “Impact of Data Normalization on Classification Model Accuracy,” Res. Pap. Fac. Mater. Sci. Technol. Slovak Univ. Technol., vol. 27, no. 45, pp. 79–84, Sep. 2019, doi: 10.2478/rput-2019-0029.

L. Yu, R. Zhou, R. Chen, and K. K. Lai, “Missing Data Preprocessing in Credit Classification: One-Hot Encoding or Imputation?,” Emerg. Mark. Finance Trade, vol. 58, no. 2, pp. 472–482, Jan. 2022, doi: 10.1080/1540496X.2020.1825935

Downloads

Published

2023-10-16

How to Cite

-, jeffry, Usman, S., & Aziz, F. (2023). Analisis Perilaku Pelanggan menggunakan Metode Ensemble Logistic Regression. JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), 6(2), 90-97. https://doi.org/10.34012/jutikomp.v6i2.4258