Klasifikasi Citra Cuaca Menggunakan Inception-V3 dan K-Nearest Neighbors
DOI:
https://doi.org/10.34012/jutikomp.v6i2.4052Keywords:
Weather Datasets, Inception-V3, K-Nearest NeighborsAbstract
Weather imagery has a crucial role in various sectors, such as aviation, maritime and agriculture. Weather conditions have a big impact on activities in these fields and greatly influence operations. Classifying weather images can be done by analyzing weather image data, which can be used to predict the type of weather that may occur. The results of these weather predictions have significant value in daily decision making in these various sectors. One method for classifying weather images can be done by first extracting weather image features using Inception-V3 which is then calculated using the K-Nearest Neighbors method. This research uses 1748 weather images with 4 categories to carry out training which produces a model with Accuracy 91%, F1 91%, Recall 91%, Precision 91%, and uses 8 weather images with 4 categories to carry out testing which produces classifications with all correct values. every image.
References
D. Darwish, “Simulation and Evaluation of Signature Recognition Techniques,” vol, vol. 37, pp. 65–74, 2013.
M. S. SIMANJUNTAK, “Identifikasi Tanda Tangan menggunakan Metode Fitur Ekstrasi Biner dan K Nearest Neighbor,” CSRID (Computer Science Research and Its Development Journal), vol. 12, no. 3, p. 191, Mar. 2021, doi: 10.22303/csrid.12.3.2020.191-200.
R. Rosnelly and L. Wahyuni, “Tropical Diseases Identification Using Neural Network Adaptive Resonance Theory 2,” in 2018 6th International Conference on Cyber and IT Service Management (CITSM), IEEE, Aug. 2018, pp. 1–4. doi: 10.1109/CITSM.2018.8674364.
I. Firmansyah, R. Rosnelly, and Wanayumini, “Inception-V3 Versus VGG-16 in Rice Classification Using Multilayer Perceptron,” in 2nd International Conference on Information Science and Technology Innovation (ICoSTEC), 2023.
W. Shen and X. Li, “Facial expression recognition based on bidirectional gated recurrent units within deep residual network,” International Journal of Intelligent Computing and Cybernetics, vol. 13, no. 4, pp. 527–543, Nov. 2020, doi: 10.1108/IJICC-07-2020-0088.
D. Pan, Z. Zhao, L. Zhang, and C. Tang, “Recursive clustering K-nearest neighbors algorithm and the application in the classification of power quality disturbances,” in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), IEEE, Nov. 2017, pp. 1–5. doi: 10.1109/EI2.2017.8245652.
R. M. F. Lubis, Z. Situmorang, and R. Rosnelly, “ANALISIS VARIATION K-FOLD CROSS VALIDATION ON CLASSIFICATION DATA METHOD K-NEAREST NEIGHBOR,” JURNAL IPTEKS TERAPAN, vol. 14, no. 3, pp. 206–211, 2020, doi: https://doi.org/10.22216/jit.v14i3.98.
Jehan Bhathena, “Weather Image Recognition,” Kaggle. Accessed: Oct. 23, 2023. [Online]. Available: https://www.kaggle.com/datasets/jehanbhathena/weather-dataset
R. A. Pratiwi, S. Nurmaini, D. P. Rini, M. N. Rachmatullah, and A. Darmawahyuni, “Deep ensemble learning for skin lesions classification with convolutional neural network,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 10, no. 3, p. 563, Sep. 2021, doi: 10.11591/ijai.v10.i3.pp563-570.
A. Lumini, L. Nanni, and G. Maguolo, “Deep learning for plankton and coral classification,” Applied Computing and Informatics, vol. 19, no. 3/4, pp. 265–283, Jun. 2023, doi: 10.1016/j.aci.2019.11.004.
S. R. Cholil, T. Handayani, R. Prathivi, and T. Ardianita, “Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa,” IJCIT (Indonesian Journal on Computer and Information Technology), vol. 6, no. 2, pp. 118–127, 2021, doi: https://doi.org/10.31294/ijcit.v6i2.10438.
N. L. G. P. Suwirmayanti, “Penerapan Metode K-Nearest Neighbor Untuk Sistem Rekomendasi Pemilihan Mobil,” Techno.Com, vol. 16, no. 2, pp. 120–131, Feb. 2017, doi: 10.33633/tc.v16i2.1322.
A. F. Hidayatullah, A. A. Fadila, K. P. Juwairi, and R. A. Nayoan, “Identifikasi Konten Kasar pada Tweet Bahasa Indonesia,” Jurnal Linguistik Komputasional (JLK), vol. 2, no. 1, p. 1, Mar. 2019, doi: 10.26418/jlk.v2i1.15.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Iqbal Giffari Ritonga, Rika Rosnelly, Pius Deski Manalu, Teresa Tamba, Kristine Wau
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Hak Cipta atas naskah-naskah karya ilmiah di dalam Jurnal ini dipegang oleh Penulis.
- Penulis menyerahkan hak saat pertama kali mempublikasi Naskah karya ilmiahnya dan secara bersamaan Penulis memberikan izin/lisensi dengan mengacu pada Creative Commons Attribution-ShareAlike 4.0 International License kepada pihak lain untuk menyebarkan karya ilmiahnya tersebut dengan tetap mencantumkan penghargaan bagi penulis dan Jurnal Teknologi dan Ilmu Komputer Prima sebagai media Publikasi pertama atas karya tersebut.
- Hal-hal yang berkaitan dengan non-eksklusivitas pendistribusian Jurnal yang menerbitkan karya ilmiah penulis dapat diperjanjikan secara terpisah (contoh: permintaan untuk menempatkan karya yang dimaksud pada perpustakaan suatu institusi atau menerbitkannya sebagai buku) dengan Penulis sebagai salah satu pihak perjanjian dan dengan penghargaan pada Jurnal Teknologi dan Ilmu Komputer Prima sebagai media publikasi pertama atas karya dimaksud.
- Penulis dapat dan diharapkan untuk mengumumkan karyanya secara online (misalnya pada Repositori atau pada laman Organisai/Institusinya) sejak sebelum dan selama proses pengumpulan naskah, sebab upaya tersebut dapat meningkatkan pertukaran citasi lebih awal dan dengan cakupan yang lebih luas.