Klasifikasi Citra Cuaca Menggunakan Inception-V3 dan K-Nearest Neighbors

Authors

  • Iqbal Giffari Ritonga Universitas Potensi Utama
  • Rika Rosnelly Universitas Potensi Utama
  • Pius Deski Manalu Universitas Potensi Utama
  • Teresa Tamba Universitas Potensi Utama
  • Kristine Wau Universitas Potensi Utama

DOI:

https://doi.org/10.34012/jutikomp.v6i2.4052

Keywords:

Weather Datasets, Inception-V3, K-Nearest Neighbors

Abstract

Weather imagery has a crucial role in various sectors, such as aviation, maritime and agriculture. Weather conditions have a big impact on activities in these fields and greatly influence operations. Classifying weather images can be done by analyzing weather image data, which can be used to predict the type of weather that may occur. The results of these weather predictions have significant value in daily decision making in these various sectors. One method for classifying weather images can be done by first extracting weather image features using Inception-V3 which is then calculated using the K-Nearest Neighbors method. This research uses 1748 weather images with 4 categories to carry out training which produces a model with Accuracy 91%, F1 91%, Recall 91%, Precision 91%, and uses 8 weather images with 4 categories to carry out testing which produces classifications with all correct values. every image.

References

D. Darwish, “Simulation and Evaluation of Signature Recognition Techniques,” vol, vol. 37, pp. 65–74, 2013.

M. S. SIMANJUNTAK, “Identifikasi Tanda Tangan menggunakan Metode Fitur Ekstrasi Biner dan K Nearest Neighbor,” CSRID (Computer Science Research and Its Development Journal), vol. 12, no. 3, p. 191, Mar. 2021, doi: 10.22303/csrid.12.3.2020.191-200.

R. Rosnelly and L. Wahyuni, “Tropical Diseases Identification Using Neural Network Adaptive Resonance Theory 2,” in 2018 6th International Conference on Cyber and IT Service Management (CITSM), IEEE, Aug. 2018, pp. 1–4. doi: 10.1109/CITSM.2018.8674364.

I. Firmansyah, R. Rosnelly, and Wanayumini, “Inception-V3 Versus VGG-16 in Rice Classification Using Multilayer Perceptron,” in 2nd International Conference on Information Science and Technology Innovation (ICoSTEC), 2023.

W. Shen and X. Li, “Facial expression recognition based on bidirectional gated recurrent units within deep residual network,” International Journal of Intelligent Computing and Cybernetics, vol. 13, no. 4, pp. 527–543, Nov. 2020, doi: 10.1108/IJICC-07-2020-0088.

D. Pan, Z. Zhao, L. Zhang, and C. Tang, “Recursive clustering K-nearest neighbors algorithm and the application in the classification of power quality disturbances,” in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), IEEE, Nov. 2017, pp. 1–5. doi: 10.1109/EI2.2017.8245652.

R. M. F. Lubis, Z. Situmorang, and R. Rosnelly, “ANALISIS VARIATION K-FOLD CROSS VALIDATION ON CLASSIFICATION DATA METHOD K-NEAREST NEIGHBOR,” JURNAL IPTEKS TERAPAN, vol. 14, no. 3, pp. 206–211, 2020, doi: https://doi.org/10.22216/jit.v14i3.98.

Jehan Bhathena, “Weather Image Recognition,” Kaggle. Accessed: Oct. 23, 2023. [Online]. Available: https://www.kaggle.com/datasets/jehanbhathena/weather-dataset

R. A. Pratiwi, S. Nurmaini, D. P. Rini, M. N. Rachmatullah, and A. Darmawahyuni, “Deep ensemble learning for skin lesions classification with convolutional neural network,” IAES International Journal of Artificial Intelligence (IJ-AI), vol. 10, no. 3, p. 563, Sep. 2021, doi: 10.11591/ijai.v10.i3.pp563-570.

A. Lumini, L. Nanni, and G. Maguolo, “Deep learning for plankton and coral classification,” Applied Computing and Informatics, vol. 19, no. 3/4, pp. 265–283, Jun. 2023, doi: 10.1016/j.aci.2019.11.004.

S. R. Cholil, T. Handayani, R. Prathivi, and T. Ardianita, “Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa,” IJCIT (Indonesian Journal on Computer and Information Technology), vol. 6, no. 2, pp. 118–127, 2021, doi: https://doi.org/10.31294/ijcit.v6i2.10438.

N. L. G. P. Suwirmayanti, “Penerapan Metode K-Nearest Neighbor Untuk Sistem Rekomendasi Pemilihan Mobil,” Techno.Com, vol. 16, no. 2, pp. 120–131, Feb. 2017, doi: 10.33633/tc.v16i2.1322.

A. F. Hidayatullah, A. A. Fadila, K. P. Juwairi, and R. A. Nayoan, “Identifikasi Konten Kasar pada Tweet Bahasa Indonesia,” Jurnal Linguistik Komputasional (JLK), vol. 2, no. 1, p. 1, Mar. 2019, doi: 10.26418/jlk.v2i1.15.

Downloads

Published

2023-10-27

How to Cite

Ritonga, I. G. ., Rosnelly, R. ., Manalu, P. D. ., Tamba, T. ., & Wau, K. . (2023). Klasifikasi Citra Cuaca Menggunakan Inception-V3 dan K-Nearest Neighbors. JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), 6(2), 118-122. https://doi.org/10.34012/jutikomp.v6i2.4052