Implementasi Algoritma K-Medoids Clustering Untuk Mencari Keuntungan Sementara Dalam Laporan Keuangan

Authors

  • Annisa Oktavianti Hermadi Universitas Bhayangkara Jakarta Raya
  • wowon Priatna Universitas Bhayangkara Jakarta Raya
  • Allan D Alexander Universitas Bhayangkara Jakarta Raya

DOI:

https://doi.org/10.34012/jutikomp.v6i1.3505

Keywords:

Clustering, K-Medoids, Data Mining, Profit Report

Abstract

The current economy has developed rapidly, especially with advances in technology in obtaining an installation decision, especially in elementary school installations where in private elementary school installations, there is some financial report data information such as income, expenses, and the results that have been achieved in these installations such as in SD Plus Albina. However, at SD Plus Albina, Bekasi Regency, the role of technology has yet to be implemented, especially in the financial reporting system, by knowing the level of temporary profits because knowing the value of temporary profits can make it easier to make decisions. Using the K-Medoids Clustering Algorithm, you can find out the temporary profit level with manual calculations using Microsoft Excel 2020 and sample data, 2 clusters are obtained, namely high and low. The low cluster (C1) is 2 data, and the high cluster (C2) is 12. Compared to other clustering algorithms, the advantage of the K-Medoids algorithm is that it is more reliable when there is noise data because it is not too affected by other extreme data.

References

A. Faisal, R. Samben, and S. Pattisahusiwa, “Analisis kinerja keuangan,” Kinerja, vol. 14, no. 1, p. 6, 2018, doi: 10.29264/jkin.v14i1.2444.

S. Tang and Elvi, “Analisis Faktor-Faktor yang Berpengaruh Terhadap Ketepatan Waktu Pelaporan Keuangan Perusahaan,” J. Akuntabel, vol. 18, no. 1, pp. 172–182, 2021, [Online]. Available: http://journal.feb.unmul.ac.id/index.php/AKUNTABEL%0AAnalisis.

I. Safira, R. Salkiawati, and W. Priatna, “Penerapan Algoritma K-Means untuk Mengetahui Pola Persediaan Barang pada Toko Raja Bekasi,” J. Inform. Inf. Secur., vol. 3, no. 1, pp. 99–110, 2022, doi: 10.31599/jiforty.v3i1.1253.

R. T. Handayanto et al., “Penentuan Pola Frekuensi Menggunakan Algoritma Apriori pada Sistem Informasi Berbasis Web,” J. Student Reseacrh Comput. Sci., vol. 3, no. 2, pp. 241–254, 2022.

W. Priatna, R. Purnomo, and T. D. Putra, “Implementasi Deep Learning Untuk Rekomendasi Aplikasi E-learning Yang Tepat Untuk Pembelajaran jarak jauh,” J. Kaji. Ilm., vol. 21, no. 3, pp. 261–274, 2021, doi: 10.31599/jki.v21i3.521.

W. Purba, S. Tamba, and J. Saragih, “The effect of mining data k-means clustering toward students profile model drop out potential,” J. Phys. Conf. Ser., vol. 1007, no. 1, pp. 0–6, 2018, doi: 10.1088/1742-6596/1007/1/012049.

I. Kamila, U. Khairunnisa, and M. Mustakim, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 5, no. 1, p. 119, 2019, doi: 10.24014/rmsi.v5i1.7381.

D. A. Alodia, A. P. Fialine, D. Endriani, and E. Widodo, “Implementasi Metode K-Medoids Clustering untuk Pengelompokan Provinsi di Indonesia Berdasarkan Indikator Pendidikan,” Sepren, vol. 2, no. 2, pp. 1–13, 2021.

E. Herman, K. E. Zsido, and V. Fenyves, “Cluster Analysis with K-Mean versus K-Medoid in Financial Performance Evaluation,” Appl. Sci., vol. 12, no. 16, 2022, doi: 10.3390/app12167985.

A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” J. Tekno Kompak, vol. 15, no. 2, p. 25, 2021, doi: 10.33365/jtk.v15i2.1162.

K. Singh, D. Malik, and N. Sharma, “Evolving limitations in K-means algorithm in data mining and their removal,” IJCEM Int. J. Comput. Eng. Manag. ISSN, vol. 12, no. April, pp. 2230–7893, 2011, [Online]. Available: www.IJCEM.org%5Cnwww.ijcem.org.

F. A. Syam, “Implementasi Metode Klastering K-Means untuk Mengelompokan Hasil Evaluasi Mahasiswa,” J. Ilmu Komput. dan Bisnis, vol. 8, no. 1, pp. 1857–1864, 2017, doi: 10.47927/jikb.v8i1.94.

S. Masithoh et al., “Implementasi mbkm (merdeka belajar kampus merdeka) menurut perspektif mahasiswa agribisnis,” J. Agribisains, vol. 7, no. 2, pp. 59–67, 2022, [Online]. Available: https://ojs.unida.ac.id/AGB/article/view/5036.

H. Priyatman, F. Sajid, and D. Haldivany, “Klasterisasi Menggunakan Algoritma K-Means Clustering untuk Memprediksi Waktu Kelulusan Mahasiswa,” J. Edukasi dan Penelit. Inform., vol. 5, no. 1, p. 62, 2019, doi: 10.26418/jp.v5i1.29611.

S. Setiawati and W. Priatna, “Pengelompokan Hasil Survei MBKM Menggunakan K-Mean dan K-,” vol. 7, pp. 426–435, 2023, doi: 10.30865/mib.v7i1.5003.

L. F. Ibrahim, “Using of clustering and ant-colony algorithms CWSP-PAM-ANT in network planning,” Int. Conf. Digit. Telecommun. 2006, ICDT’06, vol. 00, no. c, 2006, doi: 10.1109/ICDT.2006.77.

P. Arora, Deepali, and S. Varshney, “Analysis of K-Means and K-Medoids Algorithm for Big Data,” Phys. Procedia, vol. 78, no. December 2015, pp. 507–512, 2016, doi: 10.1016/j.procs.2016.02.095.

M. Herviany, S. P. Delima, T. Nurhidayah, and Kasini, “Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokkan Daerah Rawan Tanah Longsor di Provinsi Jawa Barat,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 34–40, 2021.

Qomariyah and M. U. Siregar, “Comparative Study of K-Means Clustering Algorithm and K-Medoids Clustering in Student Data Clustering,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 7, no. 2, pp. 91–99, 2022, doi: 10.14421/jiska.2022.7.2.91-99.

S. Samudi, S. Widodo, and H. Brawijaya, “The K-Medoids Clustering Method for Learning Applications during the COVID-19 Pandemic,” SinkrOn, vol. 5, no. 1, p. 116, 2020, doi: 10.33395/sinkron.v5i1.10649.

T. Widiyaningtyas, U. Pujianto, and M. I. W. Prabowo, “K-Medoids and K-Means Clustering in High School Teacher Distribution,” ICEEIE 2019 - Int. Conf. Electr. Electron. Inf. Eng. Emerg. Innov. Technol. Sustain. Futur., pp. 330–335, 2019, doi: 10.1109/ICEEIE47180.2019.8981466.

A. Wibowo, Moh Makruf, Inge Virdyna, and Farah Chikita Venna, “Penentuan Klaster Koridor TransJakarta dengan Metode Majority Voting pada Algoritma Data Mining,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, pp. 565–575, 2021, doi: 10.29207/resti.v5i3.3041.

T. S. Madhulatha, “Comparison between K-Means and K-Medoids,” Int. Conf. Adv. Comput. Inf. Technol., pp. 472–473, 2011.

Downloads

Published

2023-04-26

How to Cite

Hermadi, A. O. ., Priatna, wowon, & Alexander, A. D. . (2023). Implementasi Algoritma K-Medoids Clustering Untuk Mencari Keuntungan Sementara Dalam Laporan Keuangan. JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), 6(1), 6-11. https://doi.org/10.34012/jutikomp.v6i1.3505