A Data Pre-processing Strategy Utilizing Adaptive Masking for the Classification of Pediatric Pneumonia Using VGG-16

Main Article Content

Yoshi Inne Herawati
Basuki Rahmat
Hendra Maulana

Abstract

Pneumonia is still a leading cause of death in children, especially in areas with limited medical resources. This study aims to test several pre-processes to find the best set of pre-processes that can be applied to the children's chest X-ray dataset by applying adaptive masking, histogram equalization, CLAHE and Gaussian blur. Then, childhood pneumonia is classified using a CNN architecture, namely VGG-16. By applying these pre-processing methods, this study is divided into several scenarios. The highest accuracy was obtained from scenario 1, which used a combination of adaptive masking, histogram equalization and Gaussian blur, resulting in an accuracy of 94%. Scenario 2 uses histogram equalization and Gaussian blur with an accuracy of 92%. Then Scenario 3 uses a histogram equalization replacement for CLAHE with a combination of adaptive masking, CLAHE and Gaussian blur with 93% accuracy. Finally, scenario 4 uses a combination of CLAHE and Gaussian blur methods with 91% accuracy. In addition, this research also addresses the challenges posed by unbalanced data sets and the need for highly accurate detection tools.

Article Details

How to Cite
[1]
Y. I. Herawati, B. Rahmat, and Hendra Maulana, “A Data Pre-processing Strategy Utilizing Adaptive Masking for the Classification of Pediatric Pneumonia Using VGG-16”, JUSIKOM PRIMA, vol. 8, no. 1, pp. 173-183, Aug. 2024.
Section
Articles

References

Wati, R. A., Irsyad, H., & Rivan, M. E. A. R. (2020). Klasifikasi Pneumonia Menggunakan Metode Support Vector Machine. Jurnal Algoritme, 1(1), 21–32. https://doi.org/10.35957/algoritme.v1i1.429

Badan Pusat Statistik Provinsi Jawa Timur. (2022). Jumlah Jenis Penyakit Malaria, TB Paru, Pneumonia, Kusta Menurut Kabupaten/Kota di Provinsi Jawa Timur 2022. Diakses dari https://jatim.beta.bps.go.id/id/statistics-table/1/MzAwMSMx/jumlah-jenis-penyakit-malaria-tb-paru-pneumonia-kusta-menurut-kabupaten-kota-di-provinsi-jawa-timur-2022.html

Badan Pusat Statistik Provinsi Nusa Tenggara Timur. (2018). Jumlah Kasus Penyakit Pneumonia Menurut Jenis Penyakit 2018. Diakses dari https://ntt.beta.bps.go.id/id/statistics-table/1/NzE0IzE=/jumlah-kasus-penyakit-pneumonia-menurut-jenis-penyakit-2018.html

UNICEF Indonesia. Kesehatan. Diakses dari https://www.unicef.org/indonesia/id/kesehatan

Nuraeni, T., & Rahmawati, A. (2019). Pneumonia Pada Balita Dan Penanganan Yang Tepat. Seminar Nasional Kesehatan Masyarakat UMS, 147–151. https://publikasiilmiah.ums.ac.id/xmlui/handle/11617/11862

Heidari, M., Mirniaharikandehei, S., Khuzani, A. Z., Danala, G., Qiu, Y., & Zheng, B. (2020). Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms. International Journal of Medical Informatics, 144(September), 104284. https://doi.org/10.1016/j.ijmedinf.2020.104284

Labhane, G., Pansare, R., Maheshwari, S., Tiwari, R., & Shukla, A. (2020). Detection of Pediatric Pneumonia from Chest X-Ray Images using CNN and Transfer Learning. Proceedings of 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things, ICETCE 2020, February, 85–92. https://doi.org/10.1109/ICETCE48199.2020.9091755

Giełczyk, A., Marciniak, A., Tarczewska, M., & Lutowski, Z. (2022). Pre-processing methods in chest X-ray image classification. PLoS ONE, 17, 1–11. https://doi.org/10.1371/journal.pone.0265949

Setiawan, D., Widodo, S., Ridwan, T., & Ambari, R. (2022). Perancangan Deteksi Emosi Manusia berdasarkan Ekspresi Wajah Menggunakan Algoritma VGG16. e-Proceeding of Engineering, 11(01), 1–11.

Saputro, A., Mu’min, S., Moch. Lutfi, & Putri, H. (2022). Deep Transfer Learning Dengan Model Arsitektur Vgg16 Untuk Klasifikasi Jenis Varietas Tanaman Lengkeng Berdasarkan Citra Daun. JATI (Jurnal Mahasiswa Teknik Informatika), 6(2), 609–614. https://doi.org/10.36040/jati.v6i2.5456