Application of Smote and Decision Tree Classification in Detecting Fraudulent Transactions
Main Article Content
Abstract
Fraud detection in online transactions is critical to protecting consumers and maintaining the integrity of the online business ecosystem. Dataset imbalance can affect the classification prediction performance. To overcome data imbalance, this research uses an oversampling approach with the SMOTE method. The aim of this research is to analyze the performance of the SMOTE algorithm and decision tree classification in dealing with data imbalance problems in fraudulent transactions. The dataset used is online payments taken from Kaggle. The dataset shows that there are unbalanced classes, and it was found that using the SMOTE method increased the performance value better than using it without the SMOTE method. Using SMOTE gets very high metric values, up to a recall value of 100%. This shows that the model used in classifying fraudulent transactions is very effective.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish their manuscripts through the Journal of Information Systems and Computer Science agree to the following:
- Copyright to the manuscripts of scientific papers in this Journal is held by the author.
- The author surrenders the rights when first publishing the manuscript of his scientific work and simultaneously the author grants permission / license by referring to the Creative Commons Attribution-ShareAlike 4.0 International License to other parties to distribute his scientific work while still giving credit to the author and the Journal of Information Systems and Computer Science as the first publication medium for the work.
- Matters relating to the non-exclusivity of the distribution of the Journal that publishes the author's scientific work can be agreed separately (for example: requests to place the work in the library of an institution or publish it as a book) with the author as one of the parties to the agreement and with credit to sJournal of Information Systems and Computer Science as the first publication medium for the work in question.
- Authors can and are expected to publish their work online (e.g. in a Repository or on their Organization's/Institution's website) before and during the manuscript submission process, as such efforts can increase citation exchange earlier and with a wider scope.
References
Arifiyanti, A. A., & Wahyuni, E. D. (2020). Smote: Metode Penyeimbang Kelas Pada Klasifikasi Data Mining. SCAN - Jurnal Teknologi Informasi Dan Komunikasi, 15(1). https://doi.org/10.33005/scan.v15i1.1850
Armiani, R., & Agustini, E. P. (2022). Analisa Fraud Pada Transaksi Kartu Kredit Menggunakan Algoritma Random Forest. Jurnal Teknologi Informasi Dan Terapan, 9(2), 118–126. https://doi.org/10.25047/jtit.v9i2.297
Cahyaningtyas, C., Nataliani, Y., & Widiasari, I. R. (2021). Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE. Aiti, 18(2), 173–184. https://doi.org/10.24246/aiti.v18i2.173-184
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). snopes.com: Two-Striped Telamonia Spider. Journal of Artificial Intelligence Research, 16(Sept. 28), 321–357. https://arxiv.org/pdf/1106.1813.pdf%0Ahttp://www.snopes.com/horrors/insects/telamonia.asp
Dian Fitri Mellina, A., & Ainul Yaqin, M. (2024). Algoritma Decision Tree untuk Prediksi Deteksi Penyakit Kanker Payudara. Jurnal Informatika Sunan Kalijaga), 9(1), 70–78.
Fauziningrum, M.Pd, E., & Sulistyaningsih, E. I. (2021). Penerapan Data Mining Metode Decision Tree Untuk Mengukur Penguasaan Bahasa Inggris Maritim (Studi Kasus Di Universitas Maritim Amni). Jurnal Sains Dan Teknologi Maritim, 22(1), 41. https://doi.org/10.33556/jstm.v22i1.285
Franseda, A., Kurniawan, W., Anggraeni, S., & Gata, W. (2020). Integrasi Metode Decision Tree dan SMOTE untuk Klasifikasi Data Kecelakaan Lalu Lintas. Jurnal Sistem Dan Teknologi Informasi (Justin), 8(3), 282. https://doi.org/10.26418/justin.v8i3.40982
Guo, Y., Han, S., Li, Y., Zhang, C., & Bai, Y. (2018). K-Nearest Neighbor combined with guided filter for hyperspectral image classification. Procedia Computer Science, 129, 159–165. https://doi.org/10.1016/j.procs.2018.03.066
Maulidah, M., Windu Gata, Rizki Aulianita, & Cucu Ika Agustyaningrum. (2020). Algoritma Klasifikasi Decision Tree Untuk Rekomendasi Buku Berdasarkan Kategori Buku. E-Bisnis : Jurnal Ilmiah Ekonomi Dan Bisnis, 13(2), 89–96. https://doi.org/10.51903/e-bisnis.v13i2.251
Samuel, Y. T., & Nahuway, C. B. A. (2020). Prediksi Indeks Prestasi Mahasiswa Yang Berkuliah Sambil Bekerja Di Universitas Advent Indonesia Dengan Menggunakan Metode Decision Tree C4.5 Dan Smote. TeIKa, 10(01), 69–77. https://doi.org/10.36342/teika.v10i01.2281
Sari, E. P., Febrianti, D. A., & Fauziah, R. H. (2022). Fenomena Penipuan Transaksi Jual Beli Online Melalui Media Baru Berdasarkan Kajian Space Transition Theory. Deviance Jurnal Kriminologi, 6(2), 153. https://doi.org/10.36080/djk.1882
Selfiani, S., Prihanto, H., Yulaeli, T., & Moestopo, H. J. (2022). Analisa Potensi Kecurangan Pada Praktik Belanja Online. Jurnal Manajemen Dan Bisnis, 2(1), 88–98. https://doi.org/10.32509/jmb.v2i1.2004
Syukron, A., Sardiarinto, S., Saputro, E., & Widodo, P. (2023). Penerapan Metode Smote Untuk Mengatasi Ketidakseimbangan Kelas Pada Prediksi Gagal Jantung. Jurnal Teknologi Informasi Dan Terapan, 10(1), 47–50. https://doi.org/10.25047/jtit.v10i1.313
Trisnanto, P. (2023). Konseptual Desain Alat Sensor Map Dokumen Rekam Medis: Konseptual Desain Alat Sensor Map Dokumen Rekam Medis. Jurnal Teknologi …, September. https://doi.org/10.1980/jurnalteknologikonseptualdesign.v1i1
Zamachsari, F., & Puspitasari, N. (2021). Penerapan Deep Learning dalam Deteksi Penipuan Transaksi Keuangan Secara Elektronik. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 203–212. https://doi.org/10.29207/resti.v5i2.2952