Grouping Diseases of Patients at RSU Mitra Medika Bandar Khalippa Medan Using the K-Medoids Clustering Method

Ajeng Kiana Putri¹, Yusuf Ramadhan Nasution² ^{1,2}North Sumatra State Islamic University, Medan, Indonesia Email: ajengkyanaputri@gmail.com1, ramadhannst@gmail.com2

ABSTRACT

The aim of this research is to apply the method*K-Medois* in categorizing the illnesses of patients at the RSUBandar Khalippa Medika PartnersMedan. And to produce a system for grouping patient data based on Rapidminer and Google Colab on patient diseases.Based on the results of research on the application of the K-Medoids algorithm, it was found that the grouping of patient diseases at RSU Mitra Medika Bandar Khalippa used the RapidMiner application with a C0 (High) cluster of 3 diseases, a C1 (Medium) cluster of 6 diseases and a C2 (Low) cluster of 1 disease. Meanwhile, using the Google Colabs application with a C0 (High) cluster of 4 diseases and a C2 (Low) cluster of 3 diseases, a C1 (Medium) cluster of 4 diseases and a C2 (Low) cluster of 3 diseases. The results of grouping patient disease data at RSU Mitra Medika Bandar Khalippa using RapidMiner, it was found that the disease with the highest grouping (C0) is a disease? *Pulmonary tuberculosis*, Essential Hypertension and Diabetes Mellitus. Whereasgrouping patient disease datawith Google Colabs it was found that the disease with the highest grouping (C0) is a disease? *Pulmonary tuberculosis*, Tung, Trachea, Bronchus And Lung and Pleural Effusion.

Keywords: Disease Grouping, RSU, MethodsK-Medois.

INTRODUCTION

RSU Mitra Medika Bandar Khalippa Medan, located in Medan City, is one of the hospitals under the Ministry of Health whose function is to provide services to the community. Currently, RSU Mitra Medika Bandar Khalippa Medan, in storing patient medical record data, only sorts the diseases most commonly suffered and does not pay attention to addresses, types of participants and gender. Therefore, RSU Mitra Medika Bandar Khalippa Medan needs disease data processing to find out information about diseases that patients often suffer from. With this information, RSU Mitra Medika Bandar Khalippa Medan can take policy action in anticipating treatment and disease prevention by conducting outreach, providing additional doctors and being able to equip RSU facilities according to patient disease clustering.

To produce accurate information, medical record data needs to be processed using data mining. Data mining provides several techniques for producing important information from piles of different data such as clustering techniques. Clustering in data mining is a method of dividing data into groups that have objects with the same characteristics(Ginting et al., 2021). One method that can be used for data mining clustering is K-Medoids. K-Medoids is a partition

algorithm, because it uses the most centralized objects (medoids) in a cluster to become the cluster center of the average value of objects in a cluster. The k-medoids method is more suitable for grouping data(Veronika et al., 2023).

Based on the problems above, this research applies a well-known data mining technique, namely clustering using the k-medoids method to group diseases of RSU patients.Bandar Khalippa Medika PartnersMedan. By knowing the clustering condition of the patient's disease, the RSUBandar Khalippa Medika PartnersMedan is expected to be able to improve services by taking policy action in anticipating treatment, prevention and adding facilities as well as adding doctors according to the patient's illness.

LITERATURE REVIEW

The aim of previous research was to collect reference and comparative data. Additionally, do not draw parallels between this research and other research. Therefore, the researcher used the following findings from previous research in this previous study: The results of research into the grouping of the spread of the new Covid-19 show that people come from various regions in Indonesia. Characteristics of a body temperature above 36.9°c and accompanied by fever and continuous cough shows one of the characteristic symptoms of Covid-19 (Sindi et al., 2020). Based on the results of this research, it can be concluded that with the K-Medoids method, 34 provinces were obtained from the grouping data, resulting in 21 provinces, namely the low cluster, 12 provinces in the medium cluster, and 1 province in the high cluster from the percentage of allergy immunization in each province (Ningrum et al. ., 2021).

Data Mining

Data Mining is an analytical process designed to examine large amounts of data in search of valuable and consistent hidden knowledge(Pulungan et al., 2019). Data Mining is used to search for knowledge contained in large databases so it is often called Knowledge Discovery Database (KDD), namely the stages carried out in extracting knowledge from a collection of data ((Marisa, 2018). The process of extracting hidden information in a large database often uses the terms datamining and knowledge discovery in databases (KDD).

K-Medoids

K-Medoids Clustering known as Partitioning Around Medoids (PAM), is a variant of the k-means method, using the partition clustering method to group a set of n objects into k clusters(Nahdliyah et al., 2019). This algorithm uses objects in a collection of objects to represent a cluster called medoids.

Rapid Miner

Rapid Miner is open source software. Rapid Miner is a solution for analyzing data mining, text mining and predictive analysis(Luluk Elvitaria, 2017). Rapid Miner uses various descriptive and predictive techniques to provide insights to users so they can make the best decisions.

Google Colab

Google Colab, or Google Colaboratory, is a cloud-based platform that allows users to write and run Python code in the browser. This platform is very popular among data scientists, researchers, and developers because it provides an easy-to-access programming environment without the need for local configuration. Google Colab provides access to free CPU, GPU, and TPU, which makes it very useful for computationally demanding tasks, such as training machine learning and deep learning models(Soen et al., 2022).

METHODS

The research determined the research location at RSU Mitra Medika Bandar Khalippa Medan Jl. Medan - Batang Kuis, Hamlet XI Emplasmen, Bandar Klippa Village, District. Percut Sei Tuan, Deli Serdang Regency, North Sumatra. Research methodology is useful so that the implementation of research can run well and systematically and meet the desired objectives. This research uses the rapidminer application to carry out a data mining process using the K-Medoids method for clustering patient illnesses at RSU Mitra Medika Bandar Khalippa Medan. In the process, the research procedures used were the following stages: Literature Study, Interviews, Data Collection, System Work Design, Application Testing.The following is the research flow as in Figure 1.

Figure 1. Research Flow Chart

The steps that will be used in this research can be seen in Figure 2.

Figure 2. K-Medoids Flowchart

RESULTS

Data analysis

The data used in grouping patients' diseases at RSU Mitra Medika Bandar Khalippa using the K-Medoids clustering method is pre-existing data with High, Medium and Low disease types. This aims to make it easier to obtain information that is used to classify patient illnesses. The following is data on diseases and their numbers January 2023 to December 2023 as in Table 1.

Table 1. Patient Disease DataRSU Mitra Medika Bandar Khalippa

No	Disease Name	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
1	Neumonia	64	36	67	37	89	67	37	29	21	32	29	21
2	Chronic Obstructive Pulmonary	47	24	44	35	76	80	35	31	12	35	31	12
3	Asthma	42	17	56	61	55	44	33	52	14	51	52	14
10	Diabetes Mellitus	42	29	77	73	25	56	73	31	26	57	31	26

Implementation of the K-Medoids Algorithm

In this section, we will explain how to implement the K-Medoids algorithm on data on the diseases most frequently experienced by patients obtained from interviews with parties.RSU Mitra Medika Bandar Khalippa. Before calculating, the results of the K-Medoids method are to determine the grouping of the patient's disease. The types of grouping used in this research are in Table 2.

Table 2. Patient Disease Grouping

No	Clusters	Grouping Type
1	C0	Tall
2	C1	Currently
3	C2	Low

The solution steps using the K-Medoids algorithm include the following:

1. Initialize as many cluster centers as possible from sample data. For selection, each medoid is chosen randomly.*Bronchus Or Lung,Chronic Obstructive Pulmonary*And*Essential Hypertension*as the initial medoid as in Table 3.

Disease Name	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Bronchus Or Lung	36	31	55	29	49	45	29	61	28	63	61	28
Chronic												
Obstructive	47	24	44	35	76	80	35	31	12	35	31	12
Pulmonary												
Essential	25	37	67	28	38	10	28	40	3/1	/18	40	34
Hypertension	23	57	07	20	50	10	20	-10	54	-10	-0	54

Table 3. Initial Medoid

2. Calculate the value of the closest distance (cost) using the Euclidian Distance equation, namely equation (1). So the calculation to calculate the distance of each object to the initial medoid is as follows:

 $D_{\text{Nuemonia, C0}} = \sqrt{(64-36)2 + (36-31)2 + (67-55)2 + (37-29)2 + (89-49)2 + (67-45)2 + (37-29)2} + (29-61)2 + (21-28)2 + (32-63)2 + (29-61)2 + (21-28)2 = 79.19596$

JUSIKOM PRIMA (Jurnal Sistem Informasi dan Ilmu Komputer Prima) Vol. 8 No. 1, August 2024

 $D_{Diabetes, C0} = \sqrt{(42-25)2+(29-37)2+(77-67)2+(73-28)2+(25-38)2+(56-10)2+(73-28)2+(31-40)2+(26-34)2+(57-48)2+(31-40)2+(26-34)2=84.0892383}$

The overall results can be seen in Table 4:

Disease Name	C0	C1	C2	Proximity
Neumonia	79.19596	38.56164	93.7763296	38.561639
Chronic Obstructive Pulmonary	73.57309	0	96.1405222	0
Asthma	44.81071	61.48984	67.955868	44.810713
Bronchus Or Lung	0	73.57309	54.1479455	0
Trachea, Bronchus And Lung	83.15047	100.2547	129.799846	83.150466
Pleural Effusion	64.93073	66.89544	87.8293801	64.930732
Pulmonary tuberculosis	75.52483	61.7333	86.4291617	61.733297
Congestive Heart Failure	93.31667	106.7286	116.137849	93.316665
Essential Hypertension	53.17894	94.46163	4	4
Diabetes Mellitus	83.28865	89.88882	84.0892383	83.288655
Ν	Number of Prox	imities		473.79217

Table 4. 1st Iteration K-Medoids Algorithm Calculation Results

After obtaining the distance results from each object in the 1st iteration, proceed to the 2nd iteration. The new medoid can be seen in Table 5.

Disease Name	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Diabetes Mellitus	42	29	77	73	25	56	73	31	26	57	31	26
Pleural Effusion	32	41	54	51	98	56	51	49	38	52	49	38
Congestive Heart Failure	61	61	45	75	56	76	75	57	58	60	57	58

Table 5. New Medoid 2nd Iteration

Recalculate the distance from each object in the 2nd Iteration with the new medoid. The same process is carried out in the second iteration. So the results obtained from the entire 2nd iteration can be seen in table 6:

Table 6. 2nd Iteration K-Medoids Algorithm Calculation Results

Disease Name	C0	C1	C2	Proximity
Neumonia	90.13878	59.91661	100.687636	59.916609

JUSIKOM PRIMA (Jurnal Sistem Informasi dan Ilmu Komputer Prima) Vol. 8 No. 1, August 2024

Disease Name	C0	C1	C2	Proximity
Chronic Obstructive	80 88882	66 80544	106 371080	66 805///1
Pulmonary	07.00002	00.89344	100.371989	00.893441
Asthma	67.66831	65.32993	97.0257698	65.329932
Bronchus Or Lung	83.28865	64.93073	93.4879671	64.930732
Trachea, Bronchus And Lung	133,832	92.21714	107.126094	92.217135
Pleural Effusion	89.61585	0	73.9324016	0
Pulmonary tuberculosis	54.79964	83.04216	88.3062852	54.799635
Congestive Heart Failure	84.77618	75.03333	2	2
Essential Hypertension	84.61087	84.95881	115.775645	84.610874
Diabetes Mellitus	0	89.61585	85.5277733	0
Nu	mber of Proxim	ities		490.70036

3. Calculate Total Deviation (S)

After getting the distance value between the 1st iteration and the 2nd iteration, calculate the total deviation (S) by calculating the new total distance value - the old total distance value. If S<0, then swap the objects with the cluster data to form a new set of k objects as medoids.

S = Total*cost*new – Old total cost =490.70036–473.79217=16.90819

Because the S value > 0, the iteration process is stopped. So that the members of each cluster are obtained in Table 7.

No	Disease Name	C0	C1	C2	Proximity	Clutser
1	Neumonia	90.13878	59.91661	100.687636	59.916609	C1
2	Chronic Obstructive Pulmonary	89.88882	66.89544	106.371989	66.895441	C1
3	Asthma	67.66831	65.32993	97.0257698	65.329932	C1
10	Diabetes Mellitus	0	89.61585	85.5277733	0	C0

Table 7. Clustering Results with K-Medoids

Results of Applying the K-Medoids Method

After searching for the closest cluster value, the following are the results of grouping the patient's diseaseRSU Mitra Medika Bandar Khalippabased on 10 disease data using the K-Medoids method as in Table 8.

Table 8. Patient Disease Grouping

No	Disease Name	Clusters	Grouping Type
1	Neumonia	C1	Currently
2	Chronic Obstructive Pulmonary	C1	Currently
3	Asthma	C1	Currently
10	Diabetes Mellitus	C0	Tall

In Table 8, the grouping of patients' illnesses into high, medium and low categories is explained. The high category has 4 types of disease, the medium category has 3 types of disease

JUSIKOM PRIMA (Jurnal Sistem Informasi dan Ilmu Komputer Prima)Vol. 8 No. 1, August 2024E-ISSN:2580-2879

and the low category has 3 types of disease. Based on grouping using the K-Medoids method, it was found that the diseases most often faced by partiesRSU Mitra Medika Bandar Khalippain the period January 2023 to December 2023 is a disease*Pulmonary tuberculosis*, Essential Hypertension and Diabetes Mellitus. Based on the results of the grouping, partiesRSU Mitra Medika Bandar Khalippacan prioritize adding facilities or doctors who treat patients with High or Medium category illnesses.

System Implementation

Based on the analysis in the previous chapter, an implementation and testing process is needed to apply and test the correctness of the results of data processing that has been done manually. For the implementation and testing process you can use one of the Rapidminer application software version 9.8.1 using patient disease data at the RSU Khalippa Bandar Medika Partners. Next is to test the system with rapidminer with the following steps.

1. Open the Rapid Miner Application

Here is what rapidminer looks like when it is first opened:

Figure 3. Flash Rapidminer display

After the rapidminer flash display then the main menu of rapidminer 9.8.1 appears as follows:

le Edit Brocess Yiew Conne	actions Settings Exte	ansions Help									
1 📁 🖩 🔹	••	Views: Design	Results	Turbo Prep	Auto Mod	el Mo	re •	Find data, ope	rators_etc	🔎 Ali Si	udio •
iopository ×	Process							Parameters	×		
😋 Import Data 🛛 = 👻	Process			p p	Ba 💼	🙀 🏹	ø 🗵	Process			
Training Resources (connected	Process							loguerbosity	init		
Samples								loofle			-
Community Samples (connect	Dire						res (
DB (Legecy)											
erators ×								👃 Show advan	ced parameters		
erators ×								Show advant	ced parameters	1	
erators × arch for Operators Data Access (50)								Show advant	ced parameters	i.	
erators × arch for Operators Data Access (50) Diending (02)								Show advant Change com Help ×	ced parameters 1986billy (9.4.000	1	
erators × arch for Operators Data Access (50) Ethinding (82) Cleansing (28)								Show sham Change com Help × Proces	ced parameters rpstbillty (9.4.900	1	
Perators × arch br Operators Data Access (50) Ditrading (82) Cleansing (28) Modeling (167) Paramo (14)								Show advant	ced parameters restibility (9.4.000 SS SS Studio Core	1	
Peraters X xarch for Cponsitive Data Access (50) Direnting (82) Containing (28) Modeling (197) Scrimg (14) Vialidation (20)	Leverace the Wisdow	Your pro Add s Drag data	cess loo some dat t or opera	ks empty. a first. ators here	ese desicn!			Entransister Channe com Help × Process RapidMin Synopsis	ced parameters reatbility (9.4.000 55 55 Studio Core	1	

Figure 4. Main Menu Display

2. Data Collection Process

After the menu appears, the next step is to insert the EXEL patient disease data which has been prepared in the following way:

🗋 🔚 🔹 🕨 🔹	Views:	Design	Result	s Turbo	Prep	Auto Model N	lore 🕶	Find d	iata, operatorsetc	۶	Al Studio *
Repository X Pro	rcess Process			ر	e s) 🕞 🖪 🧉	● E3	Parama Proc logverbos	otens × cess sity init		*
Samples Community Samples (connect) Local Repository (Local) DB (Legacy)	<mark>iii, insert</mark> iii insert iiii, Save a ¥ Cut	Operator Building Block s Building Block	•	Data Access Blending Cleansing Modeling	•	Database Applications	•	Read)	Read CSV		
Coperators	Copy	Ctr Ctr De	I+C I+V lete	Scoring Validation Utility	•	C Retrieve Store Rename Repository Conv Repository Entr	Entry V	2 <u>Sh</u>	Read Stata	٤	
Search for Operators Data Access (58) Biending (82)	G Add ni ✓ 13 Show G Set ba	te all notes ckground image re all Breakprints				Copy Repository Entry Move Repository Entry Delete Repository En	y ny	A Ct Help	Read DBase	<u>20)</u>	
Modeling (187) Scoring (14) Validation (30)	Chang	e operator order is Layout	,	cos based on u		scars dation		Synop	🍰 Read DasyLab 🍰 Read XML 🍰 Read Access	e	

Figure 5. Process of Inserting Patient Disease Data

Based on the image above, inserting patient disease data can be done by right clicking on the rapidminer worksheet then selecting "Insert Operator", "Data Access", Files", "Read" and "Read Excel", so that the following menu appears:

Figure 6. Process State Display After Read Excel

Based on the image above, then select the Excel patient disease data by selecting the "Import Configuration Wizard" button so that the search form displays as follows:

JUSIKOM PRIMA (Jurnal Sistem Informasi dan Ilmu Komputer Prima) Vol. 8 No. 1, August 2024

Figure 7. Data Selection Menu

Based on the image above, the next step is to select the Excel patient disease data, then select "Next" so that it appears as follows:

A No	B Nama P	c	D	E								
No	Nama P					G	н	1	J	к	L	м
1.000		Jan	Feb	Mar	Apr	May	Jun	Jal	Aug	Sep	Okt	Nov
	Neumon	64.000	35.000	67.000	37.000	89.000	67.000	37.000	29.000	21.000	32.000	29.0
2.000	Chronic	47.000	24.000	44.000	35.000	76.000	80.000	35.000	31.000	12.000	35.000	31.0
3.000) Asthma	42.000	17.000	56.000	61.000	55.000	44.000	33.000	52.000	14.000	51.000	52.0
4.000	Bronchu	36.000	31.000	55.000	29.000	49.000	45.000	29.000	61.000	28.000	63.000	61.0
5.000	Trachea,	75.000	37.000	66.000	18.000	87.000	95.000	18.000	78.000	34.000	83.000	78.0
6.000	Etusi Ple	32.000	41.000	54.000	51.000	98.000	56.000	51.000	49.000	38.000	52.000	49.0
7.000	D Tuberkul	37.000	24.000	33.000	60.000	31.000	68.000	60.000	33.000	21.000	36.000	33.0
8.000	Congesti	61.000	61.000	45.000	75.000	56.000	76.000	75.000	67.000	58.000	60.000	67.0
9.000	Hiperten	25.000	37.000	67.000	28.000	38.000	10.000	28.000	40.000	34.000	48.000	40.0
10.00	0 Diabetes	42.000	29.000	77.000	73.000	25.000	56.000	73.000	31.000	26.000	57.000	31.0

Figure 8. Contents of the Excel File with Data Selection Results

Based on the image above, the application displays the patient's disease data in Excel, then select "Next" so that it appears as follows:

	Replace or	ors 1	offh missing values	D							
	No di Integer	• •	Nama Peny0 + polynominal	Jan Integer	0 -	Feb 6	٣	Mar O + integar	Apr 0 + /meger	May 0 v	Jun isteger
1	1		Neumonia	64		36		67	37	09	67
2	2		Chrenic Obstructi	47		24		44	35	76	80
1	3		Asthma	42		17		56	61	55	44
ï	4		Bronchus Or Lung	36		31		55	29	49	45
	5		Trachea, Brench	75		37		66	18	87	95
	6		Efusi Pleura (Ple	32		41		54	51	96	56
7	7		Tuberkulosis paru	37		24		23	60	31	68
8	8		Congestive Heart.	61		61		45	75	56	76
9	9		Hiperlensi Esen	25		37		67	28	38	10
0	10		Diabetes Melitius	42		29		77	73	25	56

Figure 9. Patient Disease Data Column Format

Based on the image above, then make changes to the columns where the rule number column is used as "ID" and the disease name column becomes "Label", this is because the number and disease name columns are not calculated, so the appearance is as follows:

	No	0 *	Nama Penyakit e +	Nov 0 +	Des 0 +	Jan 0 +	Feb 0 +	Mar o
	M		label					
1	1		Neumonia	29	21	32	35	89
2	2		Chronic Obstructive	31	12	35	24	76
3	3		Asthma	52	16	51	17	55
4	4		Bronchus Or Lung	61	28	63	31	49
5	5		Trachea, Bronchus	78	34	83	37	87
6	5		Elusi Pleura (Pleura	49	38	62	41	98
7	7		Tuberiulosis paru	33	21	36	24	124
8	8		Congestive Heart F.,	67	58	60	61	100
9	9		Hipertensi Esensial	40	34	48	37	38
0	10		Diabeles Melitus	31	26	67	29	25

Figure 10. Completed Patient Disease Data Column Format

Based on the image above, the next step is to press the "Finish" button so that the following menu appears:

() Snew process?> - Repúblices Studio Pr Ella Edit Process View Connection	w SAGOI © DESKTOP-GAGABA								- 0	×
🜔 📒 🔚 🔹 🕨	•	Views. Design	Rosutts	Turbo Prop	Auto Medal	Deployments		Find data, operatorsetc	🔎 Al Bha	to v
Repository ×	Process Process				ø	P 🗅 🖬 🚦	i i i i i i i i i i i i i i i i i i i	Parameters ×		
Samples Generation (Loss) Connectance Gala	Process Real Facet						ыÇ	Import Configuration excel file short selection	Ward]0]0]0
processies Penganiyaan (10/23/22 3:00 HV) Gu (sheet number	1 A1.F104	0
C Diversions								encoding	5Y_ *	0
Search for Operators								date format	• =	٥
Decomposition (167) Decomposition (167)								time zone Jocale	87_ * En_ *]@]@
 Scoring (14) Validation (30) Usiny (85) 								 Hits advanced parameters Change competibility (2.8.0) 	L 1813	
Extensions (2)	Leverage the Wisdom of Crowda	to get operator recomm	endations based on y	our process design?				Help ×		4
Iset more operators from the Narketplace			Adhala Wisd	om of Crewds				RapidMiner Studio Cor	4	

Figure 11. Selection Results Patient Disease Data

3. K-Medoids Method Selection Process

Based on the results of the data selection, the data is then displayed on a worksheet, the next step is to select the method used for the process of grouping patient illnesses at RSU Mitra Medika Bandar Khalippa based on the K-Medoids method as follows:

Figure 12. K-Medoids Operator Selection Results

Based on the image above, the process of grouping patient diseases is carried out using the K-Medoids method by selecting the "Operator" modeling tab then Segmentation, k-

medoids. Next, connect the Excel data with the operator data and determine the value K = 3 so that the results are as in Figure 13.

Figure 13. Results of Linking Disease Data and K-Medoids Operators

Based on Figure 13, patient disease data is linked to all k-medoids operators with a value of K=3, where the K value is a type of cluster consisting of High, Medium and Low groupings.

Rapid Miner System Testing

After all the data has been input and connected to the k-medoids operator, the next step is to carry out testing to obtain information on the grouping of patient diseases at RSU Mitra Medika Bandar Khalippa based on data from January 2023 to December 2023 with 3 clusters. Based on Figure 13, then select "Play" to produce clustering as follows:

Oper	n in	Turbo Prep 👖 Auto Model													
	No	Nama Penyakit	cluster	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Okt	Nov	Des
1	1	Neumonia	cluster_1	64	36	67	37	89	67	37	29	21	32	29	21
2	2	Chronic Obstructive Pulmonary	cluster_1	47	24	44	35	76	80	35	31	12	35	31	12
3	3	Asthma	cluster_1	42	17	56	61	55	44	33	52	14	51	52	14
4	4	Bronchus Or Lung	cluster_1	36	31	55	29	49	45	29	61	28	63	61	28
5	5	Trachea, Bronchus And Lung	cluster_1	75	37	66	18	87	95	18	78	34	83	78	34
6	6	Efusi Pleura (Pleural Effusion)	cluster_1	32	41	54	51	98	56	51	49	38	52	49	38
7	7	Tuberkulosis paru	cluster_0	37	24	33	60	31	68	60	33	21	36	33	21
8	8	Congestive Heart Failure	cluster_2	61	61	45	75	56	76	75	57	58	60	57	58
9	9	Hipertensi Esensial	cluster_0	25	37	67	28	38	10	28	40	34	48	40	34
10	10	Diabetes Mellitus	cluster_0	42	29	77	73	25	56	73	31	26	57	31	26

Figure 14. Results of Clustering Patient Disease Data

Based on the results of patient disease clustering testing using 10 patient disease data at Mitra Medika Bandar Khalippa RSU based on data from January 2023 to December 2023, it was found that cluster 0 grouping contained 3 diseases, cluster 6 grouping contained 3 diseases and cluster 2 grouping contained 3 diseases. as many as 1 disease. Based on the results of the process, a cluster model and graph are obtained as in Figure 15.

Figure 15. Clustering Model for Patient Disease Data

Based on Figure 15, it is known that in the cluster model, cluster 0 consists of 4 items, cluster 1 consists of 3 items and cluster 2 consists of 3 disease items. The following is a graph of the results of clustering patient disease data as in Figure 16.

Figure 16. Graph of Clustering Results of Patient Disease Data

Based on Figure 16 graph, the attributes used are the name of the disease and the number of diseases. The graph is a description of the clustering results based on the attributes of the dataset on the number of diseases.

Google Colabs System Testing

After getting the clustering results in Rapidminer, then test the clustering results with Google Colabs using the Python programming language.

1. Import Libraries

To install the necessary libraries such as scikit-learn and pandas for data processing, and pyclustering for the K-Medoids algorithm. The results on Google Colabs are as in Figure 17.

Figure 17. Import Python Library

2. Upload and Read Disease Datasets

The next step is to upload and read the disease dataset that has been provided in Excel format as in Figure 18.

[14]	fr dr fi	ive.	oogle. mount ath =	colat /cor /cor	itent/	nt drive (drive') (drive/My	Drive/da	ta_pe	inyaki	it.cs						
÷	Dr	ive a	alread	ly mou	inted	at /cont	ent/drive	; to	atter	npt to	ford	ibly	remou	int, d	:əll	<pre>l drive.mount("/content/drive", force_remount=True)</pre>
0	da pr	ta = int(pd.re data)	ead_cs	w <mark>(</mark> fi]	le_path)										
÷₹		No				Nama	Penyakit	Jan	Feb	Mar	Apr	Мау	Jun	Jul	N	
	0	1				N	eumonia	64	36	67	37	89	67	37		
	1	2	Chron	ic Ob	struc	tive Pul	monary	47	24	44	35	76	80	35		
	2	3					Asthma	42	17	56	61	55	44	33		
	3	4			B	ronchus	Or Lung	36	31	55	29	49	45	29		
	4	5		Trach	ea, B	ronchus	And Lung	75	37	66	18	87	95	18		
	5	6	Efusi	Pleu	ina (P	leural E	ffusion)	32	41	54	51	98	56	51		
	6	7			Tu	iberkulos	is paru	37	24	33	60	31	68	60		
	7	8		Con	gesti	ve Heart	Fallure	61	61	45	75	56	76	75		
	8				нір	ertens1	Esensial	25	- 37	6/	28	38	10	28		
	9	10				abetes M	ellitus	42	29		/3	25	50	/3		
		Aug	Sep	OKt	Nov	Des										
		29	21	32	29	21										
	-	51	12	35	51	12										
	-	61	14	62	61	14										
	4	78	20	03	70	20										
	5	40	38	52	40	38										
	6	33	21	36	33	21										
	7	57	58	68	57	58										
	8	40	34	48	40	34										
	9	31	26	57	31	26										

Figure 18. Upload and Read Disease Dataset

3. Clustering Disease Data

The next step is to cluster disease data with K-Medoids based on the command as in Figure 19.

Figure 19. K-Medoids Clustering Command

Based on Figure 19, the results of patient disease clustering were found using 10 patient disease data at RSU Mitra Medika Bandar Khalippa based on data from January 2023 to December 2023 as in Figure 20.

	No	Nama Penyakit	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0kt	Nov	Des	Cluster
0	1	Neumonia	64	36	67	37	89	67	37	29	21	32	29	21	2
1	2	Chronic Obstructive Pulmonary	47	24	44	35	76	80	35	31	12	35	31	12	2
2	3	Asthma	42	17	56	61	55	44	33	52	14	51	52	14	2
3	4	Bronchus Or Lung	36	31	55	29	49	45	29	61	28	63	61	28	0
4	5	Trachea, Bronchus And Lung	75	37	66	18	87	95	18	78	34	83	78	34	0
5	6	Efusi Pleura (Pleural Effusion)	32	41	54	51	98	56	51	49	38	52	49	38	0
6	7	Tuberkulosis paru	37	24	33	60	31	68	60	33	21	36	33	21	1
7	8	Congestive Heart Failure	61	61	45	75	56	76	75	57	58	60	57	58	1
8	9	Hipertensi Esensial	25	37	67	28	38	10	28	40	34	48	40	34	1
9	10	Diabetes Mellitus	42	29	77	73	25	56	73	31	26	57	31	26	1

Figure 20. Results of K-Medoids Clustering in Python

Based on Figure 20, it is known that in the cluster model, cluster 0 consists of 3 items, cluster 1 consists of 4 items and cluster 2 consists of 3 disease items.

System Test Results

After testing the patient's disease clustering onRSU Mitra Medika Bandar Khalippa uses Rapidminer and Google Colabs, the following are the comparison results of grouping patient diseases using the K-Medoids method as in Table 9.

No	Disaasa Nama	Rap	idMiner	Google Colabs			
NO	Disease Name	Clusters	Classification	Clusters	Classification		
1	Neumonia	cluster_1	Currently	cluster_2	Low		
2	Chronic Obstructive Pulmonary	cluster_1	Currently	cluster_2	Low		
3	Asthma	cluster_1	Currently	cluster_2	Low		
10	Diabetes Mellitus	cluster_0	Tall	cluster_1	Currently		

Table 9. Test Results

Based on table 9, grouping of patient diseases inRSU Mitra Medika Bandar Khalippa, expectedpartyRSU Mitra Medika Bandar Khalippacan prioritize adding facilities or doctors who treat patients with High or Medium category illnesses. Identify disease patterns and trends over time. Plan preventative actions and allocate resources more effectively. Determine the need for medical resources such as medical personnel, medicines and medical devices. Optimizing the use of resources and ensuring sufficient availability to deal with the most common diseases.

CONCLUSION

Based on the results of the discussion, the results of this research can be concluded that Based on the application of the K-Medoids algorithm, it was found that the grouping of patient diseases at RSU Mitra Medika Bandar Khalippa used the RapidMiner application with the number of C0 (High) clusters being 3 diseases, C1 (Medium) clusters being 3 diseases. 6 diseases and cluster C2 (Low) with 1 disease. Meanwhile, using the Google Colabs application with a C0 (High) cluster of 3 diseases, a C1 (Medium) cluster of 4 diseases and a C2 (Low) cluster of 3 diseases. The results of grouping patient disease data at RSU Mitra Medika Bandar Khalippa using RapidMiner, it was found that the disease with the highest grouping (C0)is a Essential diseasePulmonary tuberculosis, Hypertension and Diabetes Mellitus. Whereasgrouping patient disease datawith Google Colabs it was found that the disease with JUSIKOM PRIMA (Jurnal Sistem Informasi dan Ilmu Komputer Prima)Vol. 8 No. 1, August 2024E-ISS

the highest grouping (C0)is a disease*Bronchus Or Lung*, Trachea, Bronchus And Lung and Pleural Effusion.

REFERENCES

- Andini, AD, & Arifin, T. (2020). Implementation of the k-medoids algorithm for clustering patient disease data in Bandung City Hospital. Responsive Journal: Science and Informatics Research, 2(2), 128-138.
- Cahyana, N., & Aribowo, A. (2018). K-Means Data Mining Method for Clustering Public Health Treatment and Service Data. National Seminar on Medical Informatics, 5, 24– 31.
- Luluk Elvitaria, MH (2017). Predicting the Level of Extracurricular Interest in Abdurrab Health Analysis Vocational School Students Using the C4.5 Algorithm (Case Study: Abdurrab Health Analysis Vocational School). (University Journal of Technology and Information Systems, 2(2), 220–233.
- Marisa, F. (2018). Educational Data Mining (Concepts and Applications). Information Technology, 4(2), 90–97. http://ejurnal.stimata.ac.id/index.php/TI/article/view/108/148
- Mustofa, Z., & Mood, IS (2018). K-Medoids Clustering Algorithm in E-Government in the Field of Information and Communication. Journal of Technology and Communication, 9, 1–10.
- Nahdliyah, MA, Widiharih, T., & Prahutama, A. (2019). k-MEDOIDS CLUSTERING METHOD WITH VALIDATION OF SILHOUETTE INDEX AND C-INDEX (Case Study of the Number of Regency/City Crimes in Central Java in 2018). Gaussian Journal, 8(2), 161–170. https://doi.org/10.14710/j.gauss.v8i2.26640
- Pulungan, N., Suhada, S., & Suhendro, D. (2019). Application of the K-Medoids Algorithm to Group Population 15 Years and Over According to Main Job Field. COMIC (National Conference on Information and Computer Technology), 3(1), 329–334. https://doi.org/10.30865/komik.v3i1.1609
- Rosa, & Saladin. (2019). Software engineering: structured and object-oriented. Informatics.
- Soen, GIE, Marlina, M., & Renny, R. (2022). Implementation of Cloud Computing with Google Collaboratory in the Zoom Participants Data Processing Application. JITU: Journal of Informatic Technology and Communication, 6(1), 24–30. https://doi.org/10.36596/jitu.v6i1.781