Implementation Of The ARIMA Method In Predicting LQ 45 Stock Prices (UNTR Issuer)

##plugins.themes.academic_pro.article.main##

Tegas Hadiyanto
Sarjon Defit
Rini Sovia

Abstract

The implementation of technology is used in running businesses or activities that generate profits, such as predicting investments on the stock exchange through transaction data in the transaction data base. Machine learning is an algorithm that produces an approximation function that connects input variables so that it has the potential to be implemented in stock predictions. Stock investment has the characteristics of high risk - high return. Losses are caused by investors' lack of knowledge. Stock value analysis is divided into two, namely fundamental analysis and technical analysis. Technical analysis uses data or records about the market to try to access the demand and supply of a particular stock or the market as a whole. Based on the problems found by investors or bankers, this research will use the autoregressive integrated moving average (ARIMA) method to predict stock price movements. The Arima method consists of four stages, namely identifying time series methods, estimating parameters for alternative methods, testing methods and estimating time series values. Based on these problems, the ARIMA method will be used to predict stock movements. The Arima model (1,0,2) with RMS: 2200.576849857124 successfully predicted for the next 180 days

##plugins.themes.academic_pro.article.details##

How to Cite
Hadiyanto, T., Defit, S., & Sovia, R. (2024). Implementation Of The ARIMA Method In Predicting LQ 45 Stock Prices (UNTR Issuer). Jurnal Sistem Informasi Dan Ilmu Komputer, 8(1), 257–279. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v8i1.5656

References

  1. W. Wei, 2006, Time Series Analysis Univariate and Multivariate. London:
  2. Gujarati, Damodar N. 2003. Basic Econometrics. Forth Edition, Mc Graw Hill.
  3. Agustin, I. N., & Fariono, F. (2023). Perbandingan Analisis Teknikal dengan Pendekatan Moving Average dan Parabolic SAR dalam Memprediksi Pengembalian Saham pada Indeks Saham LQ45. Ekonomis: Journal of Economics and Business, 7(1), 606-613. Doi: http://dx.doi.org/10.33087 /ekonomis.v7i1.769
  4. Adiningtyas, S., & Hakim, L. (2022). Pengaruh pengetahuan investasi, motivasi, dan uang saku terhadap minat mahasiswa berinvestasi di pasar modal syariah dengan risiko investasi sebagai variabel intervening. Jurnal Ilmiah Ekonomi Islam, 8(1), 474–482. DOI: http://dx.doi.org/10.29040/jiei.v8i1.4609
  5. Andini, Y., Hardinata, J. T., & Purba, Y. P. (2022). Penerapan Data Mining Terhadap Tata Letak Buku Di Perpustakaan Sintong Bingei Pematangsiantar Menggunakan Metode Apriori. Jurnal Times, 11(1), 9–15. https://doi.org/10.51351/jtm.11.1.2022661
  6. Ariyanti, V. P., & Yusnitasari, T. (2023). Comparison of ARIMA and SARIMA for Forecasting Crude Oil Prices. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(2), 405–413. DOI: https://doi.org/10.29207/resti.v7i2.4895
  7. Asrirawan, A., Permata, S. U., & Fauzan, M. I. (2022). Pendekatan Univariate Time Series Modelling untuk Prediksi Kuartalan Pertumbuhan Ekonomi Indonesia Pasca Vaksinasi COVID-19. Jambura Journal of Mathematics, 4(1), 86–103. DOI: https://doi.org/10.34312/jjom.v4i1.11717
  8. Chusanudin, A., & Munandar, A. (2022). Pengaruh Pengetahuan Keuangan Terhadap Niat Investasi Saham di Indonesia dengan Persepsi Risiko sebagai Variabel Moderasi. Syntax Literate; Jurnal Ilmiah Indonesia, 7(4), 5051–5071. DOI: https://doi.org/10.36418/syntax-literate.v7i4.6880
  9. Desy, D. I. P., Qur’ana, T. W., & Dharmawati, A. (2023). Pemodelan Spasial untuk Analisa Produksi Padi Integrasi Machine Learning. Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, 14(2), 128-137. DOI: https://doi.org/10.31849/digitalzone.v14i2.16256
  10. Damaliana, A. T., Muhaimin, A., & Riyantoko, P. A. (2023, November). Peramalan Lonjakan Kasus Harian Covid-19 Di Indonesia Dengan Model Arima. In Prosiding Seminar Nasional Sains Data (Vol. 3, No. 1, pp. 184-189). Doi : https://doi.org/10.33005/senada.v3i1.112
  11. Elga, R., Murni, S., & Tulung, J. E. (2022). Reaksi Pasar Modal Terhadap Peristiwa Sebelum Dan Sesudah Pengumuman Covid-19 Di Indonesia (Event Study Pada Indeks LQ45). Jurnal EMBA: Jurnal Riset Ekonomi, Manajemen, Bisnis dan Akuntansi, 10(1), 1052-1060. https://doi.org/10.35794/emba.v10i1.38703
  12. Ernayani, R., Asnawi, M. I., Lumentah, N. R., Moridu, I., & Lestari, W. (2023). Literature Review: Prospek Peningkatan Suku Bunga terhadap Nilai Perusahaan dan Return Saham. Journal of Economic, Bussines and Accounting (COSTING), 6(2), 1168–1180. DOI: https://doi.org/10.31539/costing.v6i2.4906
  13. Farosanti, L. (2022). Analisa Peramalan Penjualan Alat Kesehatan dan Laboratorium di PT. Tristania Global Indonesia Menggunakan Metode ARIMA. JIMP (Jurnal Informatika Merdeka Pasuruan), 7(1). DOI: http://dx.doi.org/10.37438/jimp.v7i1.428
  14. Fillahi, A. F. B., & Maika, M. R. (2023). ANALISIS BIBLIOMETRIK PASAR MODAL SYARIAH: PUBLIKASI ILMIAH DI NEGARA-NEGARA SELURUH DUNIA. Jurnal Tabarru’: Islamic Banking and Finance, 6(1), 164–178. https://doi.org/10.25299/jtb.2023.vol6(1).12110
  15. Głowania, S., Kozak, J., & Juszczuk, P. (2023). Knowledge Discovery in Databases for a Football Match Result. Electronics (Switzerland), 12(12), 2712. https://doi.org/10.3390/electronics12122712
  16. Hasibuan, E., & Karim, A. (2022). Implementasi Machine Learning untuk Prediksi Harga Mobil Bekas dengan Algoritma Regresi Linear berbasis Web. Jurnal Ilmiah Komputasi, 21(4), 595-602. Doi : https://doi.org/10.32409/jikstik.21.4.3327
  17. HIDAYAT, M. Z. (n.d.). Peramalan Jumlah Wisatawan Menggunakan Metode Time Series Arima dan Feed-Forward Neural Network (Studi Kasus: Tempat Wisata Pasir Putih, Situbondo).
  18. Hijrah, M., Rachman, H., & Rahayu, P. I. (2023). Peramalan Harga Saham Perusahaan Perbankan dengan Market Capitalization Terbesar di Indonesia Pasca-Covid19. Journal of Mathematics: Theory and Applications, 5(2), 95-99. Doi : https://doi.org/10.31605 /jomta.v5i2.3238
  19. Huda, M., Azizah, R. N. N., & Setyana, A. N. (2023). IMPLEMENTASI METODE ARMA DALAM PERAMALAN INFLASI PROVINSI BANTEN. Jurnal Bayesian: Jurnal Ilmiah Statistika Dan Ekonometrika, 3(2), 210–221. https://doi.org/10.46306/bay.v3i2.66
  20. Idris, M., Adam, R. I., Brianorman, Y., Munir, R., & Mahayana, D. (2022). Kebenaran dalam Perspektif Filsafat Ilmu Pengetahuan dan Implementasi dalam Data Science dan Machine Leaning. Jurnal Filsafat Indonesia, 5(2), 173–181. https://doi.org/10.23887/jfi.v5i2.42207
  21. Kristhy, M. E., Febrizha, M., Satya, O. R. S., Kumala, L., Ande, P. P., & Hidayah, N. (2022). ERLINDUNGAN HUKUM BAGI INVESTOR ASING DI INDONESIA. Jurnal Komunikasi Hukum (JKH), 8(2), 79-106. Doi. https://doi.org/10.23887/jkh.v8i2.47127
  22. Jansevskis, M., & Osis, K. (2023). Knowledge Discovery Frameworks and Characteristics. Baltic Journal of Modern Computing, 11(4), 686–702. https://doi.org/10.22364/bjmc.2023.11.4.08
  23. Lestari, W., Juliza, M., Angreni, P., Rahmawati, S., Fitria, I. M., & Hendrianingsih, N. (2023). Peramalan Harga Obligasi Pemerintah Mengunakan Model ARIMA Box-Jenkins. JIIP-Jurnal Ilmiah Ilmu Pendidikan, 6(11), 9502–9506. http://dx.doi.org/10.54371/jiip.v6i11.3280
  24. Marufi, A. (2023). Arif Ma’rufi UJI PERFORMA MODEL AUTO-ARIMA UNTUK PRAKIRAAN CURAH HUJAN BULANAN TAHUN 2021 DI PROVINSI JAMBI: ASSESSMENT OF AUTOMATED ARIMA MODEL FOR MONTHLY RAINFALL PREDICTION OVER JAMBI PROVINCE. Buletin Meterologi, Klimatologi Dan Geofisika, 3(1), 1–9.
  25. Mauliza, A. Y. I., & Canggih, C. (2023). MINAT BERINVESTASI PADA SAHAM SYARIAH: PENGARUH PENGETAHUAN INVESTASI, SISTEM ONLINE TRADING SYARIAH, DAN MOTIVASI. ECONBANK: Journal of Economics and Banking, 5(1), 36–50. DOI: https://doi.org/10.35829/econbank.v5i1.284
  26. Marlina, W. A., Armijal, A., & Nisa, M. K. (2023). ANALISIS PERAMALAN BOX JENKINS TERHADAP PENJUALAN DI UMKM IM LELE, PAYAKUMBUH. Industri Inovatif: Jurnal Teknik Industri, 13(2), 105-115. Doi: https://doi.org/ 10.36040/industri.v13i2.6526
  27. Nabella, S. D., Munandar, A., & Tanjung, R. (2022). Likuiditas, solvabilitas, aktivitas dan profitabilitas terhadap harga saham pada perusahaan sektor tambangan batu bara yang terdaftar di Bursa Efek Indonesia. Measurement Jurnal Akuntansi, 16(1), 97-102. DOI:https://doi.org/10.33373/mja.v16i1.4264
  28. Nada, D. Q., & Syaiful, S. (2022). Faktor-Faktor Yang Mempengaruhi Minat Mahasiswa Berinvestasi Di Pasar Modal Pada Masa Pandemi Covid-19. Maksimum: Media Akuntansi Universitas Muhammadiyah Semarang, 12(1), 42-52. Doi : https://doi.org/10.26714/mki.12.1.2022.42-52
  29. Nasution, S. A., Lasmi, A., Silalahi, P. R., & Nasution, A. (2023). Efektivitas Galeri Investasi Syariah Bursa Efek Indonesia (GIS BEI) UINSU Medan Dalam Meningkatkan Literasi Pasar Modal. El-Mal: Jurnal Kajian Ekonomi & Bisnis Islam, 4(3),548-559. Doi:https://doi.org/10.47467/elmal.v4i3.1931
  30. Nurani, A. T., Setiawan, A., & Susanto, B. (2023). Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma. Jurnal Sains Dan Edukasi Sains, 6(1), 34–43. https://doi.org/10.24246/juses.v6i1p34-43
  31. Nurcahyo, J. A., & Sasongko, T. B. (2023). Hyperparameter Tuning Algoritma Supervised Learning untuk Klasifikasi Keluarga Penerima Bantuan Pangan Beras. Indonesian Journal of Computer Science, 12(3).
  32. Palacios, C. A., Reyes-Suárez, J. A., Bearzotti, L. A., Leiva, V., & Marchant, C. (2021). Knowledge discovery for higher education student retention based on data mining: Machine learning algorithms and case study in chile. Entropy, 23(4), 485. https://doi.org/10.3390/e23040485
  33. Pangaribuan, J. J., Fanny, F., Barus, O. P., & Romindo, R. (2023). Prediksi Penjualan Bisnis Rumah Properti Dengan Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA). Jurnal Sistem Informasi Bisnis, 13(2), 154-161. Doi: https://doi.org/10.21456 /vol13iss2pp154-161
  34. Prasetio, R., Iswanaji, C., & Khotijah, S. A. (2023). Pengaruh Persepsi Return, Risiko, Pengetahuan dan Religiusitas Terhadap Minat Berinvestasi di Pasar Modal Syariah. Al-Intaj: Jurnal Ekonomi Dan Perbankan Syariah, 9(1), 88–108. DOI: http://dx.doi.org/10.29300/aij.v9i1.2706
  35. Pratama, B. B., & Wijayanti, D. (2023). PERANCANGAN MODEL EKONOMI KREATIF 5.0 BERBASIS DIGITAL SOCIAL INNOVATION. Jurnal Fokus Manajemen Bisnis, 13(1), 76-90.
  36. Putri, D. I., & Putra, M. Y. (2023). Komparasi Algoritma dalam Memprediksi Perubahan Harga Saham GOTO Menggunakan RapidMiner. Jurnal Khatulistiwa Informatika, 11(1), 14-20. DOI: https://doi.org/10.31294/jki.v11i1.16153.g6018
  37. Rahayu, P. I. R., Hidayatullah, M., & Hijrah, M. (2023). Implementation Vector Autoregressive (Var) On Rice Production and Rice Productivity Data in Indonesia. Jurnal Matematika, Statistika Dan Komputasi, 19(3), 580–592. https://doi.org/10.20956/j.v19i3.24881
  38. Rapi, A. (2022). Penerapan Model ARIMA Dalam Memprediksi Penjualan Produk Minuman Teh Botol Sosro Ukuran 350 mL. Inventory-Industrial Vocational E-Journal On Agroindustry, 3(2), 69-82. Doi : http://dx.doi.org/10.52759/inventory.v3i2.99
  39. Riyandi, A., Aripin, A., Ardiansyah, I. N., Dany, R., & Yusrizal, Y. (2023). Analisis Data Mining untuk Prediksi Harga Saham: Perbandingan Metode Regresi Linier dan Pola Historis. Jurnal Teknologi Sistem Informasi, 4(2), 278–288. DOI: https://doi.org/10.35957/jtsi.v4i2.5158
  40. Rizal, M., & Yustanti, W. (2023). Peramalan Close Price Mata Uang Crypto Solana Menggunakan Jaringan Syaraf Tiruan Model Backpropagation. Journal of Emerging Information System and Business Intelligence (JEISBI), 4(4), 37-46.
  41. Samosir, V. B., Widodo, A. M., Anwar, N., Sekti, B. A., & Erzed, N. (2024). Identifikasi Outlier Menggunakan Teknik Data Mining Clustering Untuk Analisis Data Tracer Study Pada Fakultas Ilmu Komputer Universitas Esa Unggul. IKRA-ITH Informatika: Jurnal Komputer Dan Informatika, 8(1), 162–174. https://doi.org/10.37817/ikraith-informatika.v8i1.3211
  42. Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2), 461–464. https://doi.org/10.1214/aos/1176344136
  43. Setyaningtyas, S., Nugroho, B. I., & Arif, Z. (2022). TINJAUAN PUSTAKA SISTEMATIS PADA DATA MINING: STUDI KASUS ALGORITMA K-MEANS CLUSTERING. J Teknoif Teknik Informatika, 10, 52-61. DOI 10.21063/jtif.2022.V10.2.52-61
  44. Shu, X., & Ye, Y. (2023). Knowledge Discovery: Methods from data mining and machine learning. Social Science Research, 110, 102817. https://doi.org/10.1016/j.ssresearch.2022.102817
  45. Soepriyono, G., & Triayudi, A. (2023). Perbandingan Kinerja Algoritma Clustering Data Mining Untuk Prediksi Harga Saham Pada Reksadana dengan Davies Bouldin Index. JURNAL MEDIA INFORMATIKA BUDIDARMA, 7(4), 2061-2073. DOI : http://dx.doi.org/10.30865 /mib.v7i4.6623
  46. Sun, J. (2021). Forecasting COVID-19 pandemic in Alberta, Canada using modified ARIMA models. Computer Methods and Programs in Biomedicine Update, 1, 100029. https://doi.org/10.1016/j.cmpbup.2021.100029
  47. Suparmadi, S., & Ramadhani, A. (2022). SISTEM ESTIMASI PENCAPAIAN TARGET PROFIT MENGGUNAKAN MODEL REGRESI BERBASIS MACHINE LEARNING. JOURNAL OF SCIENCE AND SOCIAL RESEARCH, 5(3), 703-708.DOI: https://doi.org/10.54314/ jssr.v5i3.1042
  48. Suryani, A. M., & Noviari, N. (2023). Reaksi Pasar Modal terhadap Pengumuman Kebijakan Insentif Pajak Penjualan atas Barang Mewah. E-Jurnal Akuntansi, 33(2), 302. http://dx.doi.org/10.24843/EJA.2023.v33.i02.p02
  49. Yutanesy, J., & Suhendah, R. (2022). Perubahan Harga, Volume Saham, dan Kapitalisasi Pasar Selama COVID-19 pada Sektor Keuangan. Jurnal Ekonomi, 27(03), 159–181. https://doi.org/10.24912/je.v27i03.871
  50. Utami, D., Mutmainah, K., & Jannati, N. B. (2023). Analisis Penilaian Harga Wajar Saham Dan Keputusan Investasi Saham Secara Fundamental Dengan Menggunakan Metode Price Earning Ratio (Per) Dan Price To Book Value. Journal Of Economic, Business And Engineering (Jebe), 5(1), 167-184. Doi : https://doi.org/10.32500/jebe.v5i1.5646
  51. Yutanesy, J., & Suhendah, R. (2022). Perubahan Harga, Volume Saham, dan Kapitalisasi Pasar Selama COVID-19 pada Sektor Keuangan. Jurnal Ekonomi, 27(03), 159-181. Doi : https://doi.org/10.24912 /je.v27i03.871

Most read articles by the same author(s)