Application of Smote and Decision Tree Classification in Detecting Fraudulent Transactions

##plugins.themes.academic_pro.article.main##

Nora Mina
Eka Prakarsa Mandyarth
Agung Mustika Rizki

Abstract

Fraud detection in online transactions is critical to protecting consumers and maintaining the integrity of the online business ecosystem. Dataset imbalance can affect the classification prediction performance. To overcome data imbalance, this research uses an oversampling approach with the SMOTE method. The aim of this research is to analyze the performance of the SMOTE algorithm and decision tree classification in dealing with data imbalance problems in fraudulent transactions. The dataset used is online payments taken from Kaggle. The dataset shows that there are unbalanced classes, and it was found that using the SMOTE method increased the performance value better than using it without the SMOTE method. Using SMOTE gets very high metric values, up to a recall value of 100%. This shows that the model used in classifying fraudulent transactions is very effective.

##plugins.themes.academic_pro.article.details##

How to Cite
Mina, N., Mandyarth, E. P., & Rizki, A. M. (2024). Application of Smote and Decision Tree Classification in Detecting Fraudulent Transactions. Jurnal Sistem Informasi Dan Ilmu Komputer, 8(1), 125–138. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v8i1.5355

References

  1. Arifiyanti, A. A., & Wahyuni, E. D. (2020). Smote: Metode Penyeimbang Kelas Pada Klasifikasi Data Mining. SCAN - Jurnal Teknologi Informasi Dan Komunikasi, 15(1). https://doi.org/10.33005/scan.v15i1.1850
  2. Armiani, R., & Agustini, E. P. (2022). Analisa Fraud Pada Transaksi Kartu Kredit Menggunakan Algoritma Random Forest. Jurnal Teknologi Informasi Dan Terapan, 9(2), 118–126. https://doi.org/10.25047/jtit.v9i2.297
  3. Cahyaningtyas, C., Nataliani, Y., & Widiasari, I. R. (2021). Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE. Aiti, 18(2), 173–184. https://doi.org/10.24246/aiti.v18i2.173-184
  4. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). snopes.com: Two-Striped Telamonia Spider. Journal of Artificial Intelligence Research, 16(Sept. 28), 321–357. https://arxiv.org/pdf/1106.1813.pdf%0Ahttp://www.snopes.com/horrors/insects/telamonia.asp
  5. Dian Fitri Mellina, A., & Ainul Yaqin, M. (2024). Algoritma Decision Tree untuk Prediksi Deteksi Penyakit Kanker Payudara. Jurnal Informatika Sunan Kalijaga), 9(1), 70–78.
  6. Fauziningrum, M.Pd, E., & Sulistyaningsih, E. I. (2021). Penerapan Data Mining Metode Decision Tree Untuk Mengukur Penguasaan Bahasa Inggris Maritim (Studi Kasus Di Universitas Maritim Amni). Jurnal Sains Dan Teknologi Maritim, 22(1), 41. https://doi.org/10.33556/jstm.v22i1.285
  7. Franseda, A., Kurniawan, W., Anggraeni, S., & Gata, W. (2020). Integrasi Metode Decision Tree dan SMOTE untuk Klasifikasi Data Kecelakaan Lalu Lintas. Jurnal Sistem Dan Teknologi Informasi (Justin), 8(3), 282. https://doi.org/10.26418/justin.v8i3.40982
  8. Guo, Y., Han, S., Li, Y., Zhang, C., & Bai, Y. (2018). K-Nearest Neighbor combined with guided filter for hyperspectral image classification. Procedia Computer Science, 129, 159–165. https://doi.org/10.1016/j.procs.2018.03.066
  9. Maulidah, M., Windu Gata, Rizki Aulianita, & Cucu Ika Agustyaningrum. (2020). Algoritma Klasifikasi Decision Tree Untuk Rekomendasi Buku Berdasarkan Kategori Buku. E-Bisnis : Jurnal Ilmiah Ekonomi Dan Bisnis, 13(2), 89–96. https://doi.org/10.51903/e-bisnis.v13i2.251
  10. Samuel, Y. T., & Nahuway, C. B. A. (2020). Prediksi Indeks Prestasi Mahasiswa Yang Berkuliah Sambil Bekerja Di Universitas Advent Indonesia Dengan Menggunakan Metode Decision Tree C4.5 Dan Smote. TeIKa, 10(01), 69–77. https://doi.org/10.36342/teika.v10i01.2281
  11. Sari, E. P., Febrianti, D. A., & Fauziah, R. H. (2022). Fenomena Penipuan Transaksi Jual Beli Online Melalui Media Baru Berdasarkan Kajian Space Transition Theory. Deviance Jurnal Kriminologi, 6(2), 153. https://doi.org/10.36080/djk.1882
  12. Selfiani, S., Prihanto, H., Yulaeli, T., & Moestopo, H. J. (2022). Analisa Potensi Kecurangan Pada Praktik Belanja Online. Jurnal Manajemen Dan Bisnis, 2(1), 88–98. https://doi.org/10.32509/jmb.v2i1.2004
  13. Syukron, A., Sardiarinto, S., Saputro, E., & Widodo, P. (2023). Penerapan Metode Smote Untuk Mengatasi Ketidakseimbangan Kelas Pada Prediksi Gagal Jantung. Jurnal Teknologi Informasi Dan Terapan, 10(1), 47–50. https://doi.org/10.25047/jtit.v10i1.313
  14. Trisnanto, P. (2023). Konseptual Desain Alat Sensor Map Dokumen Rekam Medis: Konseptual Desain Alat Sensor Map Dokumen Rekam Medis. Jurnal Teknologi …, September. https://doi.org/10.1980/jurnalteknologikonseptualdesign.v1i1
  15. Zamachsari, F., & Puspitasari, N. (2021). Penerapan Deep Learning dalam Deteksi Penipuan Transaksi Keuangan Secara Elektronik. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 203–212. https://doi.org/10.29207/resti.v5i2.2952